What Is Integrated Across Fixations?

  • Alexander Pollatsek
  • Keith Rayner
Part of the Springer Series in Neuropsychology book series (SSNEUROPSYCHOL)

Abstract

Our strongest introspection in perception is of a stable world. However, the visual system obtains an input that is far from stable. In normal viewing conditions—when the eye is not tracking a moving object—the eyes stay relatively immobile for periods of only a fraction of a second. In between these periods of rest (called fixations), there are rapid ballistic eye movements (called saccades) in which the retinal image is merely a smear. Thus, vision usually consists of the following sequence of events: an interval of a sixth to about a half a second in which there is a stable retinal image followed by a brief interval of a smear, an interval with a different stable retinal image, another smear, and so on (Rayner, 1978a). A central question of visual perception is how the percept of a stable world emerges from all this chaos.

Keywords

Retina Posit Arena Retinoid Metaphor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpern, M. (1962). Muscular mechanisms. In H. Davson (Ed.), The Eye (Vol. 3). New York: Academic Press.Google Scholar
  2. Balota, D.A., Pollatsek, A., & Rayner, K. (1985). The interaction of contextual constraints and parafoveal visual information in reading. Cognitive Psychology, 17, 364–390.PubMedCrossRefGoogle Scholar
  3. Balota, D.A., & Rayner, K. (1983). Parafoveal visual information and semantic contextual constraints. Journal of Experimental Psychology: Human Perception and Performance, 9, 726–738.PubMedCrossRefGoogle Scholar
  4. Biederman, I., Mezzanotte, R.J., & Rabinowitz, J.C. (1982). Scene perception: detecting and judging objects undergoing relational violations. Cognitive Psychology, 14, 143–177.PubMedCrossRefGoogle Scholar
  5. Bouma, H. (1973). Visual interference in the parafoveal recognition of initial and final letters of words. Vision Research, 13, 767–782.PubMedCrossRefGoogle Scholar
  6. Bridgeman, B., & Mayer, M. (1983). Failure to integrate visual information from successive fixations. Bulletin of the Psychonomie Society, 21, 285–286.Google Scholar
  7. Davidson, M.L., Fox, M.J., & Dick, A.O. (1973). The effect of eye movements and backward masking on perceptual location. Perception & Psychophysics, 14, 110–116.CrossRefGoogle Scholar
  8. DenBuurman, R., Boersma, T., & Gerrisen, J.F. (1981). Eye movements and the perceptual span in reading. Reading Research Quarterly, 16, 227–235.CrossRefGoogle Scholar
  9. Di Lollo, V. (1977). On the spatio-temporal interactions of brief visual displays.In R.H. Day & G.V. Stanley (Eds.), Studies in perception (pp. 39–55) Perth: University of Western Australia Press Google Scholar
  10. Ehrlich, S.F., & Rayner, K. (1981). Contextual effects on word perception and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20, 641–655.CrossRefGoogle Scholar
  11. Estes, W.K., Allmeyer, D.H., & Reder, S.M. (1976). Serial position functions for letter identification at brief and extended exposure durations. Perception & Psychophysics, 19, 1–15.CrossRefGoogle Scholar
  12. Feldman, J.A. (1985). Four frames suffice: A provisional model of vision and space. Behavioral and Brain Sciences, 8, 265–289.CrossRefGoogle Scholar
  13. Henderson, J.M., Pollatsek, A., & Rayner, K. (1987). The effects of foveal priming and extrafoveal preview on object identification. Journal of Experimental Psychology: Human Perception and Performance, 13, 449–463.PubMedCrossRefGoogle Scholar
  14. Henderson, J.M., Pollatsek, A., & Rayner, K. (1989). Covert attention and extrafoveal information use during object identification. Perception & Psychophysics, 45, 196–208.CrossRefGoogle Scholar
  15. Ikeda, M., & Saida, S. (1978). Span of recognition in reading. Vision Research, 18, 83–88.PubMedCrossRefGoogle Scholar
  16. Inhoff, A.W. (1989). Lexical access during eye fixations in sentence reading: Are word access codes used to integrate lexical information across interword fixations? Journal of Memory and Language, 28, 444–461.CrossRefGoogle Scholar
  17. Irwin, D.E., Brown, J.S., & Sun, J-S. (1988). Visual masking and visual integration across saccadic eye movements. Journal of Experimental Psychology: General, 117,276–287.CrossRefGoogle Scholar
  18. Irwin, D.E., Yantis, S., & Jonides, J. (1983). Evidence against visual integration across saccadic eye movements. Perception & Psychophysics, 34, 49–57.CrossRefGoogle Scholar
  19. Irwin, D.E., Zacks, J.L., & Brown, J.S. (1989). Visual memory and the perception of a stable visual environment. Perception & Psychophysics, 47, 35–46.CrossRefGoogle Scholar
  20. Jonides, J., Irwin, D.E., & Yantis, S. (1982). Integrating visual information from successive fixations. Science, 215, 192–194.PubMedCrossRefGoogle Scholar
  21. Jonides, J., Irwin, D.E., & Yantis, S. (1983). Failure to integrate information from successive fixations. Science, 222, 188.PubMedCrossRefGoogle Scholar
  22. Lima, S.D. (1987). Morphological analysis in sentence reading. Journal of Memory and Language, 26, 84–99.CrossRefGoogle Scholar
  23. Loftus, G.R., & Mackworth, N.H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception & Performance, 4, 565–572.CrossRefGoogle Scholar
  24. Mackworth, N.H. (1965). Visual noise causes tunnel vision. Psychonomie Science, 3, 67–68.Google Scholar
  25. Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. San Francisco: W.H. Freeman.Google Scholar
  26. Matin, E. (1974). Saccadic suppression: A review and an analysis. Psychological Bulletin, 81, 899–917.PubMedCrossRefGoogle Scholar
  27. McClelland, J.L., & O’Regan, J.K. (1981). Expectations increase the benefit derived from parafoveal visual information in reading words aloud. Journal of Experimental Psychology: Human Perception and Performance, 7, 634–644.CrossRefGoogle Scholar
  28. McClelland, J.L., & Rumelhart, D.E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375–407.Google Scholar
  29. McConkie, G.W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Perception & Psychophysics, 17, 578–586.CrossRefGoogle Scholar
  30. McConkie, G.W., & Rayner, K. (1976a). Identifying the span of the effective stimulus in reading: Literature review and theories of reading. In H. Singer & R.B. Ruddell (Eds.), Theoretical models and processes in reading. Newark, DE: International Reading Association.Google Scholar
  31. McConkie, G.W., & Rayner, K. (1976b). Asymmetry of the perceptual span in reading. Bulletin of the Psychonomie Society, 8, 365–368.Google Scholar
  32. McConkie, G.W., Underwood, N.R., Zola, D., & Wolverton, GS. (1985). Some temporal characteristics of processing during reading. Journal of Experimental Psychology: Human Perception and Performance, 11, 168–186.PubMedCrossRefGoogle Scholar
  33. McConkie, G.W., & Zola, D. (1979). Is visual information integrated across successive fixations in reading? Perception & Psychophysics, 25, 221–224.CrossRefGoogle Scholar
  34. McConkie, G.W., Zola, D., & Wolverton, G.S. (1980, April). How precise is eye guidance? Paper presented at the annual meeting of the American Educational Research Association, Boston, MA. Google Scholar
  35. Morrison, R.E., & Rayner, K. (1981). Saccade size in reading depends upon character spaces and not visual angle. Perception & Psychophysics, 30, 395–396.CrossRefGoogle Scholar
  36. Nelson, W.W., & Loftus, G.R. (1980). The functional visual field during picture viewing. Journal of Experimental Psychology: Human Learning and Memory, 6, 391–399.CrossRefGoogle Scholar
  37. O’Regan, J.K. (1981). The convenient viewing position hypothesis. In D.F. Fisher, R.A. Monty, & J.W. Senders (Eds.), Eye movements: Cognition and visual perception. Hillsdale, NJ: Erlbaum.Google Scholar
  38. O’Regan, J.K., & Levy-Schoen, A. (1983). Integrating visual information from successive fixations: Does trans-saccadic fusion exist? Vision Research, 23, 765–768.PubMedCrossRefGoogle Scholar
  39. Paap, K.R., Newsome, S.L., McDonald, J.E., & Schvaneveldt, R.W. (1982). An activation-verification model for letter and word recognition: The word superiority effect. Psychological Review, 89, 573–594.PubMedCrossRefGoogle Scholar
  40. Palmer, J., & Ames, C.T. (1989). Measuring the effect of multiple eye fixations on size and shape discrimination. Investigative Ophthalmology and Visual Science (Supplement), 30, 159 Google Scholar
  41. Parker, R.E. (1978). Picture processing during recognition. Journal of Experimental Psychology: Human Perception and Performance, 4, 284–293.PubMedCrossRefGoogle Scholar
  42. Pirenne, M.H. (1967). Vision and the eye (2nd ed.). London: Chapman and Hall.Google Scholar
  43. Pollatsek, A., Bolozky, S., Well, A.D., & Rayner K. (1981). Asymmetries in the perceptual span for Israeli readers. Brain and Language, 14, 174–180.PubMedCrossRefGoogle Scholar
  44. Pollatsek, A., Lesch, M., Morris, R.K., & Rayner, K. (1992). Phonological codes are used in integrating information across saccades in word identification and reading. Journal of Experimental Psychology: Human Perception and Performance, 18, 148–162.PubMedCrossRefGoogle Scholar
  45. Pollatsek, A., Rayner, K., & Balota, D.A. (1986). Inferences about eye movement control from the perceptual span in reading. Perception & Psychophysics, 40, 123–130.CrossRefGoogle Scholar
  46. Pollatsek, A., Rayner, K., & Collins, W.E. (1984). Integrating pictorial information across eye movements. Journal of Experimental Psychology: General, 113, 426–442.CrossRefGoogle Scholar
  47. Pollatsek, A., Rayner, K., & Henderson, J.M. (1990). Role of spatial location in integration of pictorial information across saccades. Journal of Experimental Psychology: Human Perception and Performance, 16, 199–210.PubMedCrossRefGoogle Scholar
  48. Rayner, K. (1975). The perceptual span and peripheral cues in reading. Cognitive Psychology, 7, 65–81.CrossRefGoogle Scholar
  49. Rayner, K. (1978a). Eye movements in reading and information processing. Psychological Bulletin, 85, 618–660.PubMedCrossRefGoogle Scholar
  50. Rayner, K. (1978b). Foveal and parafoveal cues in reading. In J. Requin (Ed.), Attention and performance VIL Hillsdale, NJ: Erlbaum.Google Scholar
  51. Rayner, K., Balota, D.A., & Pollatsek, A. (1986). Against parafoveal semantic preprocessing during eye fixations in reading. Canadian Journal of Psychology, 40, 473–483.PubMedCrossRefGoogle Scholar
  52. Rayner, K., & Bertera, J.H. (1979). Reading without a fovea. Science, 206, 468–469.PubMedCrossRefGoogle Scholar
  53. Rayner, K., Inhoff, A.W., Morrison, R., Slowiaczek, M.L., & Bertera, J.H. (1981). Masking of foveal and parafoveal vision during eye fixations in reading. Journal of Experimental Psychology: Human Perception and Performance, 7, 167–179.PubMedCrossRefGoogle Scholar
  54. Rayner, K., McConkie, G.W., & Ehrlich, S.F. (1978). Eye movements and integrating information across fixations. Journal of Experimental Psychology: Human Perception and Performance, 4, 529–544.PubMedCrossRefGoogle Scholar
  55. Rayner, K., McConkie, G.W., & Zola, D. (1980). Integrating information across eye movements. Cognitive Psychology, 12, 206–226.PubMedCrossRefGoogle Scholar
  56. Rayner, K., & Pollatsek, A. (1983). Is visual information integrated across saccades? Perception & Psychophysics, 34, 39–48.CrossRefGoogle Scholar
  57. Rayner, K., Well, A.D., & Pollatsek, A. (1980). Asymmetry of the effective visual field in reading. Perception & Psychophysics, 27, 537–544.CrossRefGoogle Scholar
  58. Rayner, K., Well, A.D., Pollatsek, A., & Bertera, J.H. (1982). The availability of useful information to the right of fixation in reading. Perception & Psychophysics, 31, 537–550.CrossRefGoogle Scholar
  59. Saida, S., & Ikeda, M. (1979). Useful visual field size for pattern perception. Perception & Psychophysics, 25, 119–125.CrossRefGoogle Scholar
  60. Trehub, A. (1977). Neuronal models for cognitive processes: Networks for learning, perception, and imagination. Journal of Theoretical Biology, 65, 141–169.PubMedCrossRefGoogle Scholar
  61. Ungerleider, L.G. (1985). The corticocortical pathways for object recognition and spatial perception. In CG. Chagas (Ed.), Pattern recognition mechanisms. Rome: Pontificiae Academiae Scientiarum Scripta VariaGoogle Scholar
  62. Ungerleider, L.G., & Mishkin, M. (1985). Two cortical visual systems. In D.J. Ingle, M.A. Goodale, & R.J.W. Mansfield (Eds.), Analysis of visual behavior. Cambridge, MA: MIT Press.Google Scholar
  63. Van der Heijden, A.H.C., Bridgeman, B., & Mewhort, D.J.K. (1986). Is stimulus persistence affected by eye movements? A critique of Davidson, Fox, and Dick (1973). Psychological Research, 48, 179–181.PubMedCrossRefGoogle Scholar
  64. Waltz, D. (1975). Understanding line drawings of scenes with shadows. In P.H. Winston (Ed.), The Psychology of computer vision. New York: McGraw-Hill.Google Scholar
  65. Wolf, W., Hauske, G., & Lupp, U. (1978). How presaccadic gratings modify post-saccadic modulation transfer function. Vision Research, 18, 1173–1179.PubMedCrossRefGoogle Scholar
  66. Wolf, W., Hauske, G., & Lupp, U. (1980). Interaction of pre- and post-saccadic patterns having the same coordinates in space. Vision Research, 20, 117–125.PubMedCrossRefGoogle Scholar
  67. Wurtz, R.H., Goldberg M.E., & Robinson, D.L. (1980). Behavioral modulation of visual responses in the monkey: Stimulus selection for attention and movement. In J.M. Sprague & A.N. Epstein (Eds.), Progress in psychobiology and physiological psychology (Vol. 9) New York: Academic Press.Google Scholar
  68. Wurtz, R.H., Goldberg, M.E., & Robinson, D.L. (1982). Brain mechanisms of visual attention. Scientific American, 246, 124–135.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Alexander Pollatsek
  • Keith Rayner

There are no affiliations available

Personalised recommendations