Thermodynamics of Silicate Melts: Configurational Properties

  • P. Richet
  • D. R. Neuville
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 10)


The ease with which a liquid adjusts to the shape of its container is a well-known consequence of the hallmark of the molten state, atomic mobility. Atomic mobility is the very reason why liquids flow, even though another salient feature evident through daily experience is that the viscosity increases when the temperature decreases. In fact, if crystallization does not occur, the viscosity eventually becomes so high that flow can no longer take place during the timescale of an experiment. The resulting material is a glass, i.e., a solid with the frozen-in disordered atomic arrangement of a liquid. Glasses have been produced for millennia, but the kinetic nature of the liquid-glass transition and its influence on the properties of glasses have long remained elusive. We will not specifically address these aspects, however, because they have already been extensively discussed in the geochemical literature from a relaxational (Dingwell and Webb, 1990) or thermochemical standpoint (Richet and Bottinga, 1983, 1986). In this review, we will focus on features of liquids that are directly related to atomic mobility, namely, the existence of those contributions to physical properties of liquids that have been termed configurational (Simon, 1931; Bernal, 1936).


Heat Capacity Glass Transition Silicate Glass Viscosity Data Configurational Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, G. and Gibbs, J.H. (1965). On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys.43, 139–146.CrossRefGoogle Scholar
  2. Akimoto, S.I., Komada, E., and Kushiro, I. (1967). Effect of pressure on the melting of olivine and spinel polymorphs of Fe2SiO4. J. Geophys. Res.72, 679–686.CrossRefGoogle Scholar
  3. Angell, C.A. (1988). Perspective on the glass transition. J. Phys. Chem. Solids 49, 863–871.CrossRefGoogle Scholar
  4. Angell, C.A. and Sichina, W. (1976). Thermodynamics of the glass transition: Empirical aspects. Ann. N.Y. Acad. Sci.279, 53–67.CrossRefGoogle Scholar
  5. Arndt, J. and Häberle, F. (1973). Thermal expansion and glass transition temperatures of synthetic glasses of plagioclase-like compositions. Contrib. Mineral. Petrol.39, 175–183.CrossRefGoogle Scholar
  6. Bacon, C.R. (1977). High-temperature heat content and heat capacity of silicate glasses: Experimental data and a model of calculation. Amer. J. Sci.277,109–135.CrossRefGoogle Scholar
  7. Bernal, J.D. (1936). An attempt at a molecular theory of liquid structure. Disc. Farad. Soc.336, 27–40.Google Scholar
  8. Bockris, J.O.’M. and Lowe, D.C. (1954). Viscosity and structure of liquid silicates. Proc. Roy. Soc., Lond.A226,423–435.Google Scholar
  9. Bockris, J.O.’M., Mackenzie, J.D., and Kitchener, J.A. (1955). Viscous flow in silica and binary liquid silicates. Trans. Farad. Soc.51, 1734–1748.CrossRefGoogle Scholar
  10. Bockris, J.O.’M., Tomlinson, J.W., and White, J.L. (1956). The structure of liquid silicates: Partial molar volumes and expansivities. Trans. Farad. Soc.53, 299–310.CrossRefGoogle Scholar
  11. Bottinga, Y. (1986). On the isothermal compressibility of silicate liquids at high pressure. Earth Planet. Sci. Lett.74, 350–360.CrossRefGoogle Scholar
  12. Bottinga, Y. and Weill, D.F. (1970). Density of liquid silicate systems calculated from partial molar volumes of oxide components. Amer. J. Sci.269,169–182.CrossRefGoogle Scholar
  13. Bottinga, Y. and Weill, D.F. (1972). Viscosity of magmatic silicate liquids: A model for calculation. Amer. J. Sci.272, 438–475.CrossRefGoogle Scholar
  14. Bottinga, Y., Weill, D.F., and Richet, P. (1982). Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions. Geochim. Cosmochim. Acta, 46,909–919.CrossRefGoogle Scholar
  15. Bottinga, Y., Richet, P., and Weill, D.F. (1983). Calculation of the density and thermal expansion coefficient of silicate liquids. Bull. Minéral.106,129–138.Google Scholar
  16. Carmichael, I.S.E., Nicholls, J, Spera, F.J., Wood, B.J., and Nelson, S.A. (1977). High temperature properties of silicate liquids: Application to the equilibration and ascent of basic magma. Phil. Trans. Roy. Soc. Lond.A286, 373–431.Google Scholar
  17. Davies, R.O. and G.O., Jones (1953). Thermodynamic and kinetic properties of glasses. Adv. Phys.2, 370–410.CrossRefGoogle Scholar
  18. Dingwell, D.B. and Webb, S.L. (1990). Relaxation in silicate melts. Eur. J. Mineral.2, 427–449.Google Scholar
  19. Farnan, I. and Stebbins, J.F. (1990). High-temperature 29Si NMR investigation of solid and molten silicates. J. Amer. Chem. Soc.112, 32–39.CrossRefGoogle Scholar
  20. Finger, L.W. and Ohashi, Y. (1976). The thermal expansion of diopside to 800°C and a refinement of the crystal structure at 700°C. Amer. Mineral.61, 303–310.Google Scholar
  21. Goldstein, M. (1969a). Viscous liquids and the glass transition: A potential energy barrier picture. J. Chem. Phys.51, 3728–3739.CrossRefGoogle Scholar
  22. Goldstein, M. (1976). Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid. J. Chem. Phys.64,4767–4774.CrossRefGoogle Scholar
  23. Haggerty, J.S., Cooper, A.R., and Heasley, J.H. (1968). Heat capacity of three inorganic glasses and supercooled liquids. Phys. Chem. Glasses 5,130–136.Google Scholar
  24. Haselton H.T. and Westrum, E.F. (1980). Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60 grossular40. Geochim. Cosmochim. Acta 44, 701–709.CrossRefGoogle Scholar
  25. Haselton, H.T., Hovis, G.L., Hemingway, B.S., and Robie, R.A. (1983). Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solutions: Lack of evidence for Na,K short-range order and implications for two-feldspar thermometry. Amer. Mineral.68, 398–413.Google Scholar
  26. Haselton, H.T., Hemingway, B.S., and Robie, R.A. (1984). Low-temperature heat capacities of CaAl2Si06 glass and pyroxene and thermal expansion of CaAl2Si06 pyroxene. Amer. Mineral.69, 481–489.Google Scholar
  27. Hemley, R.J., Jephcoat, A.P., Mao, H.K., Ming, L.C., and Manghnani, M.H. (1988). Pressure-induced amorphization of crystalline silica Nature 334, 52–54.CrossRefGoogle Scholar
  28. Hummel, W. and Arndt, J. (1985). Variation of viscosity with temperature and composition in the plagioclase system. Contrib. Mineral. Petrol.90, 83–92.CrossRefGoogle Scholar
  29. Johari, G.P. (1976). Glass transition and secondary relaxations in molecular liquids and crystals. Ann. N.Y. Acad. Sci.279, 117–140.CrossRefGoogle Scholar
  30. Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev.43, 219–256.CrossRefGoogle Scholar
  31. Kelley, K.K., Todd, S.S., Orr, L.R., King, E.G., and Bonnickson, K.R. (1953). Thermodynamic properties of sodium-aluminum silicates. U.S. Bureau Mines Rept. Inv. 4955.Google Scholar
  32. Knoche, R., Dingwell, D.B., and Webb, S.L. (1992). Temperature-dependent thermal expansivities of silicate melts: The system anorthite-diopside. Geochim. Cosmochim. Acta, in press.Google Scholar
  33. Krupka, K.M., Robie, R.A., Hemingway, B.S., Kerrick, D.M., and Ito, J. (1985). Low-temperature heat capacities and derived thermodynamic properties of antophyllite, diopside, enstatite, bronzite, and wollastonite. Amer. Mineral. 70, 249–260.Google Scholar
  34. Levien, L. and Prewitt, C.T. (1981). High-pressure structural study of diopside. Amer. Mineral.66, 315–323.Google Scholar
  35. Licko, T. and Danek, V. (1986). Viscosity and structure of melts in the system CaO-Mg0-Si02. Phys. Chem. Glasses 27, 22–29.Google Scholar
  36. Maekawa, H., Maekawa, T., Kawamura, K., and Yokokawa, Y. (1991). The structural groups of alkali silicate glasses determined from 29Si MAS-NMR. J. Non-Cryst. Solids 127, 53–64.CrossRefGoogle Scholar
  37. Matson, D.W., Sharma, S.K., and Philpotts, J.A., (1986). Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. Amer. Mineral.71, 694–704.Google Scholar
  38. Mishima, O., Calvert, L.D., and Whalley, E. (1984). “Melting ice” at 77 K and 10 kbar: A new method of making amorphous solids. Nature 310, 393–395.CrossRefGoogle Scholar
  39. Murdoch, J.B., Stebbins, J.F., and Carmichael, I.S.E., (1985). High-resolution 29Si NMR study of silicate and aluminosilicate glasses: The effect of network modifying cations. Amer. Mineral.70, 332–343.Google Scholar
  40. Navrotsky, A., Peraudeau, G., McMillan, P., and Coutures, J.P. (1982). Thermochemical study of glasses and crystals along the joins silica-calcium aluminate and silica-sodium aluminate. Geochim. Cosmochim. Acta 46, 2039–2047.CrossRefGoogle Scholar
  41. Navrotsky, A., Geisinger, K.L., McMillan, P., and Gibbs, G.V. (1985). The tetrahedral framework in glasses and melts. Inferences from molecular orbital calculations, and implications for structure, thermodynamics, and physical properties. Phys. Chem. Mineral.11, 284–298.CrossRefGoogle Scholar
  42. Neuville, D.R. and Richet, P. (1991). Vicosity and mixing in molten (Ca,Mg) pyroxenes and garnets. Geochim. Cosmochim. Acta 55, 1011–1019.CrossRefGoogle Scholar
  43. Nikonov, A.M., Bogdanov, V.N., Nemilov, S.V., Shono, A. A, and Mikhailov, V.N. (1982). Structural relaxation in binary alkalisilicate melts. Fyz. Khim. Stekla 8, 694–703.Google Scholar
  44. Richard, G. and Richet, P. (1990). Room-temperature amorphization of fayalite and high-pressure properties of Fe2Si04 liquid. Geophys. Res. Lett.17, 2093–2096.CrossRefGoogle Scholar
  45. Richet, P. (1984). Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta 48, 471–483.CrossRefGoogle Scholar
  46. Richet, P. (1987). Heat capacity of silicate glasses. Chem. Geol 62, 111–124.CrossRefGoogle Scholar
  47. Richet, P. (1988). Superheating, melting and vitrification through decompression of high-pressure minerals. Nature 331, 56–58.CrossRefGoogle Scholar
  48. Richet, P. and Bottinga, Y. (1983). Verres, liquides, et transition vitreuse. Bull. Minéral.106,147–168.Google Scholar
  49. Richet, P. and Bottinga, Y. (1984a). Glass transition and thermodynamic properties of amorphous Si02, NaAlSin02n+2 and KAlSi3O8. Geochim. Cosmochim. Acta 48, 453–470.CrossRefGoogle Scholar
  50. Richet, P. and Bottinga, Y. (1984b). Anorthite, andesine, diopside, wollastonite, cordierite and pyrope: Thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth Planet. Sci. Lett.67, 415–432.CrossRefGoogle Scholar
  51. Richet, P. and Bottinga, Y. (1985). Heat capacity of aluminum-free silicate liquids. Geochim. Cosmochim. Acta 49, 471–486.CrossRefGoogle Scholar
  52. Richet, P. and Bottinga, Y. (1986). Thermochemical properties of silicate glasses and liquids: A review. Rev. Geophys.24, 1–25.CrossRefGoogle Scholar
  53. Richet, P., Bottinga, Y., and Téqui, C. (1984). Heat capacity of sodium silicate liquids. J. Amer. Ceram. Soc.67, C6-C8.Google Scholar
  54. Richet, P. and Fiquet, G. (1991). High-temperature heat capacity and premelting of minerals in the system Ca0-MgO-Al2O3-SiO2. J. Geophys. Res.96, 445–456.CrossRefGoogle Scholar
  55. Richet, P., Bottinga, Y., Deniélou, L., Petitet, J.P., and Téqui, C. (1982). Thermodynamic properties of quartz, cristobalite and amorphous Si02: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim. Cosmochim. Acta 46, 2639–2658.CrossRefGoogle Scholar
  56. Richet, P., Robie, R.A., and Hemingway, B.S. (1986). Low-temperature heat capacity of diopside glass (CaMgSi2O6): A calorimetric test of the configurational-entropy theory applied to the viscosity of liquid silicates. Geochim. Cosmochim. Acta 50,1521–1533.CrossRefGoogle Scholar
  57. Richet, P., Robie, R.A., Rogez, J., Hemingway, B.S., Courtial, P., and Téqui, C. (1990). Thermodynamics of open networks: Ordering and entropy in NaAlSiO4 glass, liquid, and polymorphs. Phys. Chem. Mineral.17, 385–394.Google Scholar
  58. Richet, P., Robie, R.A., and Hemingway, B.S. (1991). Thermodynamic properties of wollastonite and CaSiO3 glass and liquid. Eur. J. Mineral.3, 475–484.Google Scholar
  59. Rivers, M.L. and Carmichael, I.S.E. (1987). Ultrasonic studies of silicate melts. J. Geophys. Res.92, 9247–9270.CrossRefGoogle Scholar
  60. Robie R.A., Hemingway, B.S., and Wilson, W.H. (1978). Low-temperature heat capacities and entropies of feldspar glasses and of anorthite. Amer. Mineral.63, 109–123.Google Scholar
  61. Rosenhauer, M., Scarfe, C.M., and Virgo, D. (1979). Pressure dependence of the glass transition temperature in glasses of diopside, albite, and sodium trisilicate composition. Carnegie Inst. Wash. Yearbook 78, 547–551.Google Scholar
  62. Roy, B.N. and Navrotsky, A. (1984). Thermochemistry of charge-coupled substitutions in silicate glasses: The systems M n+ 1/nA1O2-SiO2 (M = Li,Na,K,Rb,Cs,Mg,Ca,Sr,Ba,Pb). J. Amer. Ceram. Soc.67, 606–610.CrossRefGoogle Scholar
  63. Shermer, H.F. (1956). Thermal expansion of binary alkali silicate glasses. J. NBS.57, 97–101.Google Scholar
  64. Simon, F. (1931). Uber den Zustand der unterkuhlten Flussigkeiten und Glaser. Z. Anorg. Allg. Chem.203, 219–227.CrossRefGoogle Scholar
  65. Soga N., Yamanaka, H., and Kunugi, M. (1979). Equation of state of metasilicate glasses, in High-Pressure Science and Technology, K.D. Timmerhaus and M.S. Barber, eds., Plenum, New York. pp. 200–206.Google Scholar
  66. Stebbins, J.F. (1988). Effects of temperature and composition on silicate glass structure and dynamics: Si-29 NMR results. J. Non-Cryst. Solids 106, 359–369.CrossRefGoogle Scholar
  67. Stebbins, J.F. and Farnan, I. (1989). NMR spectroscopy in the earth sciences; structure and dynamics. Science 245,257–262.CrossRefGoogle Scholar
  68. Stebbins, J.F., Carmichael, I.S.E., and Moret, L.K. (1984). Heat capacity and entropies of silicate liquids and glasses. Contrib. Mineral Petrol.86,131–148.CrossRefGoogle Scholar
  69. Stolper, E.M. and Ahrens, T.J. (1987). On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys. Res. Lett.14,1231–1233.CrossRefGoogle Scholar
  70. Taniguchi, H. and Murase, T. (1987). Some physical properties and melt strutures in the system diopside-anorthite. J. Volcan. Geoth. Res.34, 51–64.CrossRefGoogle Scholar
  71. Tauber, P. and Arndt, J. (1987). The relationship between viscosity and temperature in the system anorthite-diopside. Chem. Geol.62, 71–81.CrossRefGoogle Scholar
  72. Téqui, C., Robie, R.A., Hemingway, B.S., Neuville, D.R., and Richet, P. (1991). Melting and thermodynamic properties of pyrope (Mg3Al2Si3 012). Geochim. Cosmochim. Acta 55, 1005–1010.CrossRefGoogle Scholar
  73. Tool, A.Q. and Eichlin, C.G. (1931). Variations caused in the heating curves of glass by heat treatment. J. Amer. Ceram. Soc. 14, 276–308.CrossRefGoogle Scholar
  74. Urbain, G., Bottinga, Y., and Richet, P. (1982). Viscosity of liquid silica, silicates and aluminosilicates. Geochim. Cosmochim. Acta 46, 1061–1072.CrossRefGoogle Scholar
  75. Waff, H.S. (1975). Pressure-induced coordination changes in magmatic liquids. Geophys. Res. Lett.2, 193–196.CrossRefGoogle Scholar
  76. Williams, Q., Knittle, E., Reichlin, R., Martin, S., and Jeanloz, R. (1990). Structural and electronic properties of Fe2SiO4 at ultrahigh pressures; amorphization and gap closure. J. Geophys. Res.95, 21549–21563.CrossRefGoogle Scholar
  77. Yinnon, H. and Cooper, A.R., Jr. (1980). Oxygen diffusion in multicomponent glass-forming silicates. Phys. Chem. Glasses 21, 204–211.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • P. Richet
    • 1
  • D. R. Neuville
    • 1
  1. 1.Institut de Physique du GlobeParis Cedex 05France

Personalised recommendations