Skip to main content

Microtubule-Associated Proteins in Cerebellar Morphogenesis

  • Chapter
The Cerebellum Revisited

Abstract

In his studies of the cerebellum, Ramón y Cajal (1888,1960) noted, with characteristic clarity, the major features of morphogenesis in the various cell types. Many of his observations are now so familiar as to be commonplace, whereas others are less frequently cited, perhaps because they deal with cellular phenomena whose regulation is still not properly understood. For example, Ramón y Cajal was the first to report that the growth of axons and dendrites involves several distinct steps. He observed that the neuroblast first extends short processes of rather irregular outline, as, for example, the granule cell does during its initial horizontal, bipolar phase. Only later do these initial protrusions narrow and lengthen to form a proper “axis cylinder.” Dendrites appear later still. Thus, Purkinje cells have already produced extensive, well formed axons long before dendrites appear. At this early stage the Purkinje cell body is decorated with multiple short protoplasmic extensions that are subsequently resorbed to be replaced by the growth of the mature dendritic tree. Neurogenesis thus involves an initial outgrowth of short, irregular processes followed by the formation of a distinct axon and finally by the gradual development of the dendrites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alaimo-Beuret, D, and Matus, A. (1985): Changes in the cytoplasmic distribution of microtubule-associated protein 2 during the differentiation of cultured cerebellar granule cells. Neuroscience, 14, 1103–1115.

    Article  PubMed  CAS  Google Scholar 

  • Anglister, L, Farber, I.C, Shahar, A, and Grinvald, A. (1982): Localization of voltage-sensitive calcium channels and developing neurites: Their possible role in regulating neurite elongation. Dev. Biol, 94, 351–365.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt, R., and Matus, A. (1982): Initial phase of dendrite growth: Evidence for the involvement of high molecular weight microtubule-associated proteins (HMWPs) before the appearance of tubulin. J. Cell Biol, 92, 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt, R., Huber, G., and Matus, A. (1985): Differences in the developmental patterns of three microtubule-associated proteins in the rat cerebellum. J. Neurosci., 5, 977–991.

    PubMed  CAS  Google Scholar 

  • Bernhardt, R., and Matus, A. (1984): Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: A difference between the dendritic and axonal cytoskeletons. J. Comp. Neurol, 226, 203–221.

    Article  PubMed  CAS  Google Scholar 

  • Binder, L.I., Frankfurter, A, and Rebhun, L.I. (1985): The distribution of tau in the mammalian nervous system. J. Cell Biol, 101, 1371–1378.

    Article  PubMed  CAS  Google Scholar 

  • Black, M.M., and Greene, L.A. (1982): Changes in the colchicine susceptibility of microtubules associated with neurite outgrowth: Studies with nerve growth factor responsive PC 12 pheochromocytoma cells. J. Cell Biol, 95, 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Bray, D., Thomas, C, and Shaw, G. (1978): Growth cone formation in cultures of sensory neurons. Proc. Natl. Acad. Sci. USA, 81, 5626–5629.

    Google Scholar 

  • Brugg, B., and Matus, A. (1988): PC 12 cells express juvenile microtubule-associated proteins during nerve growth factor-induced neurite outgrowth. J. Cell Biol, 107, 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne, R.D., and Cambray-Deakin, M.A. (1988): The cellular neurobiology of neuronal development: The cerebellar granule cell. Brain Res. Rev., 13, 77–101.

    Article  Google Scholar 

  • Burgoyne, R.D., Cambray-Deakin, M.A., Lewis, S.A., Sarkar, S., and Cowan, N.J. (1988): Differential distribution of beta-tubulin isotypes in cerebellum. EMBO J., 7, 2311–2319.

    Google Scholar 

  • Caceres, A., Binder, L.I., Payne, M.R., Bender, P., Rebhun, L., and Steward, O. (1984): Differential sub-cellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue revealed by immunohistochemistry with monoclonal hybridoma antibodies. J. Neurosci., 4, 394–410.

    PubMed  CAS  Google Scholar 

  • Cleveland, D.W., Hwo, S.Y., and Kirschner, M.W. (1977): Physical and chemical properties of purified tau-factor and the role of tau in microtubule assembly. J. Mol. Biol, 116, 227–247.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, M.P. (1972): Colchicine inhibition of nerve fiber formation in vitro. J. Cell Biol, 53, 164–176.

    Article  PubMed  CAS  Google Scholar 

  • De Camilli, P., Miller, P.E., Navone, F., Theurkauf, W.E., and Vallee, R.B. (1984): Distribution of microtubule-associated protein 2 in the nervous system of the rat studied by immunofluorescence. Neuroscience, 11,819–846.

    Article  Google Scholar 

  • Faivre, C, Legrand, Ch., and Rabie, A. (1985): The microtubule apparatus of cerebellar Purkinje cells during postnatal development of the rat: The density and cold-stability of microtubules increase with age and are sensitive to thyroid hormone deficiency. Int. J. Dev. Neurosci., 3, 559–565.

    Article  Google Scholar 

  • Francon, J., Lennon, A.M., Fellous, A., Marek, A., Pierre, M., and Nunez, J. (1982): Heterogeneity of microtubule-associated proteins and brain development. Eur. J. Biochem., 129, 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Gähwiler, B.H. (1981): Morphological differentiation of nerve cells in thin organotypic cultures derived from rat hippocampus and cerebellum. Proc. R. Soc. B, 211, 287–290.

    Article  Google Scholar 

  • Garner, C.C., and Matus, A. (1988): Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts. J. Cell Biol, 106, 779–783.

    Article  PubMed  CAS  Google Scholar 

  • Garner, C.C, Tucker, R.P., and Matus, A. (1988): Specific localization of mRNA for the cytoskeletal protein MAP2 in dendrites. Nature, 336, 674–677.

    Article  PubMed  CAS  Google Scholar 

  • Goedert, M., Wischek, CM., Crowther, R.A., Walker, J.E., and Klug, A. (1988): Cloning and sequencing of the cDNA encoding a core protein of the paired helical filaments of Alzheimer disease: Identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. USA, 85, 4051–4055.

    Article  PubMed  CAS  Google Scholar 

  • Hillman, D.E.(1969): Neuronal organization of the cerebellar cortex in amphibia and reptilia. In: Neurobiology of Cerebellar Evolution and Development (R. Llinas, ed). Chicago: AMA-ERF Institute for Biomedical Research, pp. 279–324.

    Google Scholar 

  • Huber, G, Alaimo-Beuret, D., and Matus, A. (1985): MAP3: Characterization of a novel microtubule-associated protein. J. Cell Biol, 100,496–507.

    Article  PubMed  CAS  Google Scholar 

  • Huber, G., and Matus, A. (1984): Differences in the cellular distribution of the two microtubule-associated proteins, MAP1 and MAP2, in rat brain. J. Neurosci, 4, 151–160.

    CAS  Google Scholar 

  • Lee, G, Cowan, N., and Kirschner, M. (1988): The primary structure and heterogeneity of tau protein from mouse brain. Science, 239, 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S.A, Gu, W., and Cowan, N.J. (1987): Free intermingling of beta-tubulin isotypes among functionally distinct microtubules. Cell, 49, 539–548.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S.A., Wang, D., and Cowan, N.J. (1988): Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science, 242, 936–939.

    Article  PubMed  CAS  Google Scholar 

  • Lopota, M.A., and Cleveland, D.W. (1987): In vivo microtubules are co-polymers of available beta-tubulin isotypes: Localization of each of six vertebrate beta-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J. Cell Biol, 105, 1707–1720.

    Article  Google Scholar 

  • Mareck, A, Fellows, A, Francon, J, and Nunez, J. (1980): Changes in composition and activity of microtubule-associated proteins during brain development. Nature, 284, 353–355.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A. (1988): Microtubule-associated protein: Their potential role in determining neuronal morphology. Annu. Rev. Neurosci., 11, 29–44.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A, Bernhardt, R, and Hugh-Jones, T. (1981): High molecular weight microtubule associated protein are preferentially associated with dendritic microtubules in brain. Proc. Natl. Acad. Sci. USA, 78, 3013–3014.

    Article  Google Scholar 

  • Matus, A, Bernhardt, R, Bodmer, R, and Alaimo, D. (1986): Microtubule-associated protein 2 and tubulin are differentially distributed in the dendrites of developing neurons. Neuroscience, 17, 371–389.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R.A, and Borisy, G.G. (1975): Associated of high molecular weight protein with microtubules and their role in microtubule assembly in vitro. Proc. Natl. Acad. Sci. USA, 72, 2696–2700.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, A.S, and Flavin, M. (1983): Microtubule assembly using microtubule-associated protein M AP-2 prepared in defined states of phosphorylation with protein kinase and phosphatase. Eur. J. Bio-chem., 137, 37–46.

    CAS  Google Scholar 

  • Olmsted, J. (1986): Microtubule-associated proteins. Annu. Rev. Cell Biol., 2, 421–457.

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S. (1888): Estructura del cerebelo de las aves. Rev. Trim. Histol., No. 2.

    Google Scholar 

  • Ramón y Cajal, S. (1960): Studies on Vertebrate Neurogenesis. (Trans. L. Guth). Springfield, IL: Charles C Thomas, 1960.

    Google Scholar 

  • Riederer, B, and Matus, A. (1985): Differential expression of distinct microtubule-associated proteins during brain development. Proc. Natl. Acad. Sci. USA, 82, 6006–6009.

    Article  PubMed  CAS  Google Scholar 

  • Riederer, B, Cohen, R, and Matus, A. (1986): MAP5: A novel brain microtubule-associated protein under strong developmental regulation. J. Neurocytol, 15, 763–775.

    Article  PubMed  CAS  Google Scholar 

  • Seeds, N.W, Gilman, A.G, Amino, T, and Nirenberg, M.N. (1970): Regulation of axon formation by clonal lines of a neuronal tumor. Proc. Natl. Acad. Sci. USA, 66, 160–167.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo, C. (1969) Ultrastructural aspects of the cerebellar cortex of the frog. In: Neurobiology of Cerebellar Evolution and Development (R. Llinas, ed). Chicago: AMA-ERF Institute for Biomedical Research, pp. 327–367.

    Google Scholar 

  • Tsuyama, S, Terayama, Y, and Matsuyama, S. (1987): Numerous phosphates of microtubule-associated protein 2 in living rat brain. J. Biol. Chem., 262, 10886–10892.

    PubMed  CAS  Google Scholar 

  • Tucker, R.P., Binder, L.I., and Matus, A.I. (1988a): Neuronal microtubule-associated proteins in the embryonic avian spinal cord. J. Comp. Neurol, 271, 44–55.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, R.P, Binder, L.I, Viereck, C, Hemmings, B.A, and Matus, A. (1988b): The sequential appearance of low- and high-molecular weight forms of M AP2 in the developing cerebellum. J. Neurosci., 12,4503–4512.

    Google Scholar 

  • Tucker, R.P, and Matus, A.I. (1987): The molecular form and distribution of two developmentally-regulated microtubule proteins (MAP5 and MAP2) during the morphogenesis of the avian retina. Development, 101, 535–546.

    PubMed  CAS  Google Scholar 

  • Tucker, R.P, and Matus, A. (1988): Microtubule-associated proteins characteristic of embryonic brain are found in the adult mammalian retina. Dev. Biol., 130,423–434.

    Article  PubMed  CAS  Google Scholar 

  • Viereck, C, Tucker, R.P, Binder, L.I, and Matus, A. (1988): Phylogenetic conservation of brain microtubule-associated proteins MAP2 and tau. Neuroscience, 26, 893–904.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K.M, Spooner, B.S, and Wessels, M.W. (1970): Axon growth: Role of microfilaments and microtubules. Proc. Natl. Acad. Sci. USA, 66,1206–1212.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Matus, A., Tucker, R.P., Viereck, C. (1992). Microtubule-Associated Proteins in Cerebellar Morphogenesis. In: Llinás, R., Sotelo, C. (eds) The Cerebellum Revisited. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2840-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2840-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7691-3

  • Online ISBN: 978-1-4612-2840-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics