Cerebellar Control of Saccadic Eye Movements in the Pigmented Rat

  • Piergiorgio Strata
  • Leonardo Chelazzi
  • Filippo Tempia
  • Ferdinando Rossi
  • Mirella Ghirardi


As for most body movements, the cerebellum is not necessary for the generation of ocular saccades, but it is important for their correct performance. Lesion, stimulation, and recording experiments show that different regions of the cerebellum contribute to this performance (see Carpenter, 1988; Leigh and Zee, 1983, for reviews). By contrast, little is known about the importance of the inferior olive in saccadic control. Such knowledge is important for a better understanding of the role of the cerebellum in motor performance. By comparing the different effects of the lesion of the inferior olive and of localized areas of the cerebellum on saccadic activity, it is also possible to contribute to a better understanding of the role of the olivocerebellar system in cerebellar operation.


Purkinje Cell Inferior Olive Saccadic Amplitude Neural Integrator Olivary Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahill, A.T, Clark, M.R, and Stark, L. (1975a): Glissades-eye movements generated by mismatched components of the saccadic motoneuronal control signal. Math. Biosci., 26, 303–318.CrossRefGoogle Scholar
  2. Bahill, A.T, Clark, M.R, and Stark, L. (1975b): The main sequence, a tool for studying human eye movements. Math. Biosci, 24, 191–204.CrossRefGoogle Scholar
  3. Balaban, CD. (1985): Central neurotoxic effects of intraperitoneally administered 3-acetylpyridine, harmaline and niacinamide in Sprague-Dawley and Long-Evans rats: A critical review of central 3-acetylpyridine neurotoxicity. Brain Res. Rev., 9, 21–42.CrossRefGoogle Scholar
  4. Becker, W, and Klein, H.M. (1973): Accuracy of saccadic eye movements and maintenance of eccentric eye position in the dark. Vision Res., 13,1021–1034.PubMedCrossRefGoogle Scholar
  5. Benedetti, F, Montarolo, P.G, and Rabacchi, S. (1984): Inferior olive lesion induces long-lasting functional modifications in the Purkinje cells. Exp. Brain Res., 55, 368–371.PubMedCrossRefGoogle Scholar
  6. Benedetti, F, Montarolo, P.G, Strata, P, and Tempia, F. (1983): Inferior olive inactivation decreases the excitability of the intracerebellar and lateral vestibular nuclei in the rat. J. Physiol. (Lond.), 340, 195–208.Google Scholar
  7. Carpenter, R.H.S. (1988): Movements of the Eyes. London: Pion.Google Scholar
  8. Chelazzi, L, Rossi, F, Tempia, F, Ghirardi, M, and Strata, P. (1989): Saccadic eye movements and gaze holding in the head-restrained pigmented rat. Eur. J. Neurosci., 1, 639–646.PubMedCrossRefGoogle Scholar
  9. Chelazzi L, Ghirardi, M, Rossi, F, Strata P, and Tempia, F. (1990): Spontaneous saccades and gaze holding ability in the pigmented rat: II. Effect of localized cerebellar lesions. Eur. J. Neurosci., 2, 1085–1094.Google Scholar
  10. Desclin, J.C, and Escubi, J. (1974): Effects of 3-acetylpyridine on the central nervous system of the rat as demonstrated by silver methods. Brain Res., 77, 349–364.CrossRefGoogle Scholar
  11. De’Sperati, C., Montarolo, P.G, and Strata, P. (1985): Inferior olive control of the dynamic responses of the medial vestibular neurones to labyrinthine stimulation in the rat. J. Physiol (Lond), 369, 48p.Google Scholar
  12. Fuchs, A.F, Kaneko, C.R.S, and Scudder, C.A. (1985): Brainstem control of saccadic eye movements. Annu. Rev. Neurosci, 8, 307–337.PubMedCrossRefGoogle Scholar
  13. Hess, B.J.M., Savio, T., and Strata, P. (1988): Dynamic characteristics of optokinetically controlled eye movements following inferior olive lesions in the brown rat. J. Physiol. (Lond.), 397, 349–370.Google Scholar
  14. Ito, M. (1984): The Cerebellum and Neural Control. New York: Raven Press.Google Scholar
  15. Ito, M., Jastreboff, P.J., and Miyashita, Y. (1980): Retrograde influence of surgical and chemical flocculectomy upon dorsal cap neurons of the inferior olive. Neurosci. Lett., 20, 45–48.PubMedCrossRefGoogle Scholar
  16. Ito, M., Nisimaru, N., and Shibuki, K. (1979): Destruction of inferior olive induces rapid depression in synaptic action of cerebellar Purkinje cells. Nature, 277, 568–569.PubMedCrossRefGoogle Scholar
  17. Kapoula, Z, Optican, L.M., and Robinson, D.A. (1989): Visually induced plasticity of postsaccadic ocular drift in normal humans. J. Neurophysiol, 61, 879–891.Google Scholar
  18. Karachot, L., Ito, M., and Kanai, Y. (1987): Long-term effects of 3-acetylpyridine-induced destruction of cerebellar climbing fibers on Purkinje cells inhibition of vestibulospinal tract cells of the rat. Exp. Brain Res., 66, 229–246.PubMedCrossRefGoogle Scholar
  19. Kasper, H.J., Hess, B.J.M., and Dieringer, N. (1987): A precise and inexpensive magnetic field search coil system for measuring eye and head movements in small laboratory animals. J. Neurosci. Meth., 19, 115–124.CrossRefGoogle Scholar
  20. Leigh, R.J., and Zee, D.S. (1983): The Neurology of Eye Movements. Philadelphia: F.A. Davis.Google Scholar
  21. Lopiano, L., and Savio, T. (1986): Inferior olive lesion induces long-term modifications of cerebellar inhibition on Deiters nuclei. Neurosci. Res., 4, 51–61.PubMedCrossRefGoogle Scholar
  22. Montarolo, P.G., Palestini, M., and Strata, P. (1982): The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. J. Physiol. (Lond.), 332, 187–202.Google Scholar
  23. Montarolo, P.G., Raschi, F., and Strata, P. (1981): Are the climbing fibres essential for the Purkinje cell inhibitory action? Exp. Brain Res., 42, 215–218.PubMedCrossRefGoogle Scholar
  24. Optican, L.M., and Miles, F.A. (1985): Visually induced adaptive changes in primate saccadic oculomotor control signals. J. Neurophysiol, 54, 940–958.PubMedGoogle Scholar
  25. Optican, L.M., and Robinson, D.A. (1980): Cerebellar dependent adaptive control of the primate saccadic system. J. Neurophysiol, 44, 1058–1076.PubMedGoogle Scholar
  26. Optican, L.M., Zee, D.S., and Miles, F.A. (1986): Floccular lesions abolish adaptive control of post-saccadic ocular drift in primates. Exp. Brain Res., 64, 596–598.PubMedCrossRefGoogle Scholar
  27. Ritchie, L. (1976): Effects of cerebellar lesions on saccadic eye movements. J. Neurophysiol, 39, 1246–1256.PubMedGoogle Scholar
  28. Robinson, D.A. (1974): The effect of cerebellectomy on the cat’s vestibulo-ocular integrator. Brain Res., 71, 195–207.PubMedCrossRefGoogle Scholar
  29. Robinson, D.A. (1975): Oculomotor control signals. In: Basic Mechanisms of Ocular Motility and Their Clinical Implications (G. Lennerstrand and P. Bach-y-Rita, eds). Oxford: Pergamon Press, pp. 337–374.Google Scholar
  30. Robinson, D.A. (1989): Integrating with neurons. Annu. Rev. Neurosci. 12, 33–45.PubMedCrossRefGoogle Scholar
  31. Rossi, F, Cantino, D., and Strata, P. (1987): Morphology of Purkinje cell axon terminals in intra-cerebellar nuclei following inferior olive lesion. Neuroscience, 22, 99–112.PubMedCrossRefGoogle Scholar
  32. Rossi, F., Vaudano, E., Borsello, T., Bravin, M., and Strata, P. (1991): Target-deprived climbing fibres are maintained for a long time in the cerebellar cortex of the adult rat. Eur. J. Neurosci, Suppl. 4, 165.Google Scholar
  33. Strata, P. (1987): Inferior olive and motor control. In: Cerebellum and Neuronal Plasticity (M. Glickstein, J. Stein, and C. Yeo, eds). New York-London: Plenum, pp. 209–223.CrossRefGoogle Scholar
  34. Strata, P., Chelazzi, L., Ghirardi, M., Rossi, F., and Tempia, F. (1990): Spontaneous saccades and gaze holding ability in the pigmented rat: I. Effects of inferior olive lesion. Eur. J. Neurosci, 2,1074–1084.Google Scholar
  35. Strata, P., and Montarolo, P.G. (1982): Functional aspects of the inferior olive. Arch. Ital. Biol, 120, 321–329.PubMedGoogle Scholar
  36. Strata, P., Montarolo, P.G, and Hess, B.J.M. (1989): Role of inferior olive in the control of eye movements. In: The Olivocerebellar System in Motor Control (P. Strata, ed). Exp. Brain Res. Series 17. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag, pp. 281–293.Google Scholar
  37. Tempia, F., Chelazzi, L., Rossi, F., Ghirardi, M., and Strata, P. (1989): Spontaneous saccades in the pigmented rat after inferior olive lesion. In: The Olivocerebellar System in Motor Control (P. Strata, ed). Exp. Brain Res. Series 17. Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer-Verlag, pp. 294–298.Google Scholar
  38. Viirre, E., Cadera, W., and Vilis, T. (1987): The pattern of changes produced in the saccadic system and vestibuloocular reflex by visually patching one eye. J. Neurophysiol, 57, 92–103.Google Scholar
  39. Vilis, T., and Hore, J. (1981): Characteristics of saccadic dysmetria in monkeys during reversible lesions of medial cerebellar nuclei. J. Neurophysiol, 46, 828–838.Google Scholar
  40. Zee, D.S., Yamazaki, A., Butler, P.H., and Gücer, G (1981): Effects of ablation of flocculus and paraflocculus on eye movements in primate. J. Neurophysiol, 46, 878–899.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Piergiorgio Strata
  • Leonardo Chelazzi
  • Filippo Tempia
  • Ferdinando Rossi
  • Mirella Ghirardi

There are no affiliations available

Personalised recommendations