Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 2))

Abstract

A listener’s perception of the world of sound is but an abstraction of physical reality. It is determined initially by the linear acoustic transformation performed by the head, pinnae and external ear canals, followed in turn by the nonlinear mechanoelectric transduction in the bilaterally placed receptor organs of Corti and the ever changing spatio-temporal discharge patterns in ensembles of first-order afferent fibers of the auditory nerve. Within the central auditory system, which faces the acoustic world only indirectly through this filtered and fluctuating afferent input, incoming information encoded in trains of all-or-none action potentials is received, transformed, and then redistributed over parallel pathways to higher centers in the brain. Sound perception involves a number of central auditory mechanisms operating in concert, and these mechanisms form recurrent themes that run through the chapters that follow. They include sensory coding, temporal and spatial transformation, divergent and convergent projection, parallel and serial processing, localization of function and neuronal plasticity. These themes are related to hearing in ways still not fully understood, although all of them have been thought about, discussed, and studied in one form or another for a century or more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM (1986) The Auditory Midbrain. Structure and Function in the Central Auditory Pathway. Clifton, NJ: Humana Press.

    Google Scholar 

  • Allman J (1990) Evolution of neocortex. In: Jones EG, Peters A (eds) Cerebral Cortex. Comparative Structure and Evolution of Cerebral Cortex, Part I. New York: Plenum Press, pp. 269–283.

    Google Scholar 

  • Altschuler RA, Hoffman DW, Wenthold RJ (1986) Neurotransmitters of the cochlea and cochlear nucleus: Immunocytochemical evidence. Am J. Otolaryngol 7:100–106.

    Article  PubMed  CAS  Google Scholar 

  • Bast TH, Anson BJ (1949) The Temporal Bone and The Ear. Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Berman AL (1968) The Brain Stem of the Cat. Madison, Wisconsin: University of Wisconsin Press.

    Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–300.

    Article  PubMed  CAS  Google Scholar 

  • Broca P (1861) Remarques sur le siége de la faculté du langage articulé, suivies d’une observation d’aphéme (perte de la parole). Bull Soc Anat Paris 6 (2nd Ser.):330–357.

    Google Scholar 

  • Broca P (1865) Remarques sur le siége de la faculté du langage articulé. Bull Soc Anthrop 6:377–393.

    Article  Google Scholar 

  • Brown MC, Ledwith JV III (1990) Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hearing Res 49:105–118.

    Article  CAS  Google Scholar 

  • Brugge JF (1982) Auditory cortical areas in primates. In: Woolsey CN (ed) Cortical Sensory Organization, Vol. 3, Multiple Auditory Areas. Clifton, NJ: Humana Press.

    Google Scholar 

  • Brugge JF (1983) Development of the lower brainstem auditory nuclei. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 89–120.

    Google Scholar 

  • Brugge JF (1988) Stimulus coding in the development auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 113–136.

    Google Scholar 

  • Brugge JF (1992) Development of the lower auditory brainstem of the cat. In: Romand R (ed) Development of Auditory and Vestibular Systems II. Amsterdam: Elsevier.

    Google Scholar 

  • Brugge JF, Anderson DJ, Hind JE, Rose JE (1969) Time structure of discharges in single auditory nerve fibers of the squirrel monkey in response to complex periodic sounds. J Neurophysiol 32:386–401.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Reale RA (1985) Auditory cortex. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol. 4. Association and Auditory Cortices. New York: Plenum Press, pp. 229–271.

    Google Scholar 

  • Cant NB (1992) Cochlear nuclei—cell types and connectivity. In: Popper A, Fay R (eds) Springer Handbook of Auditory Research, Vol. 1: The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag.

    Google Scholar 

  • Cant NB, Gaston KC (1982) Pathways connecting the right and left cochlear nuclei. J Comp Neurol 212:313–326.

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM (1986) Cochlear nuclei: Functional neuropharmacology of the principal cell types. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 303–332.

    Google Scholar 

  • Galambos R, Davis H (1943) The response of single auditory-nerve fibers to acoustic stimulation. J Neurophys 6:39–57.

    Google Scholar 

  • Geisler CD (1988) Representation of speech sounds in the auditory nerve. J Phonetics 16:19–35.

    Google Scholar 

  • Gerstein GL, Kiang NY-S (1960) An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1:15–28.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DA, Parli JA, Dunn JD, Ross CD (1988) Neurotransmitter microchemistry of the cochlear nucleus and superior olivary complex. In: Syka J, Masterton RB (eds) Auditory Pathway. New York: Plenum Press, pp. 107–121.

    Google Scholar 

  • Greenberg S (1988) The ear as a speech analyzer. J Phonetics 16:139–149.

    Google Scholar 

  • Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.

    Article  Google Scholar 

  • Heffner HE (1987) Ferner and the study of auditory cortex. Arch Neurol 44:218–221.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Masterton RB (1990) Sound localization in mammals: Brainstem mechanisms. In: Berkley MA, Stebbins WC (eds) Comparative Perception. New York: Wiley, pp. 285–314.

    Google Scholar 

  • Helmholtz H (1954) On the Sensations of Tones as a Physiological Basis for the Theory of Music. New York: Dover.

    Google Scholar 

  • Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the cat. Ann Rev Neurosci 6:95–120.

    Article  PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1988) Organization of the cat’s auditory thalamus. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 457–484.

    Google Scholar 

  • Imig TJ, Irons WA, Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. J Neurophys 63:1–19.

    Google Scholar 

  • Imig TJ, Reale RA, Brugge JF (1982) The auditory cortex. Patterns of cortico-cortical projections related to physiological maps in the cat. In: Woolsey CN (ed) Cortical Sensory Organization, Vol. 3. Multiple Auditory Areas. Clifton, NH: Humana Press, pp. 1–42.

    Google Scholar 

  • Irvine DRF (1986) The Auditory Brainstem. A Review of the Structure and Function of Auditory Brainstem Processing Mechanisms. In: Ottoson D (ed) Progress in Sensory Physiology 7. Berlin: Springer-Verlag, pp. 1–279.

    Google Scholar 

  • Irvine DRG, Phillips DP (1982) Polysensory “association” areas of the cerebral cortex. Organization of acoustic input in the cat. In: Woolsey CN (ed) Cortical Sensory Organization, Vol. 3. Multiple Auditory Areas. Clifton, NJ: Humana Press, pp. 111–156.

    Google Scholar 

  • Javel E, McGee JA, Horst JW, Farley GR (1988) Temporal mechanisms in auditory stimulus coding. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 515–558.

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM (1984) Role of primary auditory cortex for sound-localization behavior. J Neurophys 52:819–847.

    CAS  Google Scholar 

  • Kiang NY-S, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, Mass: MIT Press.

    Google Scholar 

  • Kim DO, Molnar CE (1979) A population study of cochlear nerve fibers: Comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. J Neurophys 42:16–30.

    CAS  Google Scholar 

  • Kitzes LM (1990) Development of auditory system physiology. In: Coleman JR (ed) Development of Sensory Systems in Mammals. New York: Wiley, pp. 249–288.

    Google Scholar 

  • Konishi M, Knudsen EI (1982) A theory of neural auditory space. In: Woolsey CN (ed) Cortical Sensory Organization. Vol. 3. Multiple Auditory Areas. Clifton, NJ: Humana Press, pp. 219–230.

    Google Scholar 

  • Liberman MC (1982) The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449.

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460.

    Article  PubMed  CAS  Google Scholar 

  • Martin MR (1985) The pharmacology of amino acid receptors and synaptic transmission in the cochlear nucleus. In: Drescher DG (ed) Auditory Biochemistry. Springfield, IL: Charles C Thomas, pp. 184–197.

    Google Scholar 

  • Mast TE (1970) Binaural interaction and contralateral inhibition in dorsal cochlear nucleus of the chinchilla. J Neurophys 33:108–115.

    CAS  Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 50:275–296.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Colwell SA, Andersen RA (1982) Auditory forebrain organization. Thalamocortical and corticothalamic connections in the cat. In: Woolsey CN (ed) Cortical Sensory Organization, Vol. 3. Multiple Auditory Areas. Clifton, NJ: Humana Press, pp. 43–57.

    Google Scholar 

  • Merzenich MM, Recanzone G, Jenkins WM, Allard TT, Nudo RJ (1988) Cortical representational plasticity. In: Rakic P, Singer W (eds) Neurobiology of Neocortex. New York: Wiley, pp. 41–68.

    Google Scholar 

  • Middlebrooks JC (1988) Auditory mechanism underlying a neural code for space in the cat’s superior colliculus. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 431–435.

    Google Scholar 

  • Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J Neurosci 1:107–120.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Zook JM (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in primary auditory cortex. J Neurosci 3:203–224.

    PubMed  CAS  Google Scholar 

  • Møller AR, Jannetta PJ (1982) Evoked potentials from the inferior colliculus in man. EEG Clin Neurophysiol 53:612–620.

    Article  Google Scholar 

  • Møller AR, Jannetta PJ (1983) Auditory evoked potentials recorded from the cochlear nucleus and its vicinity in man. J Neurosurg 59:1013–1018.

    Article  PubMed  Google Scholar 

  • Møller AR, Jannetta PJ, Sekhar LN (1988) Contributions from the auditory nerve to the brain-stem auditory evoked potentials (BAEPs): Results of intracranial recording in man. EEG Clin Neurophysiol 71:198–211.

    Google Scholar 

  • Moore DR, Semple MN, Addison P, Aitkin LM (1984a) Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. I. Responses to tones of low intensity. Hearing Res 13:159–174.

    Article  CAS  Google Scholar 

  • Moore DR, Hutchings ME, Addison PD, Semple MN, Aitkin LM (1984a) Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. II. Stimulus intensity effects. Hearing Res 13:175–188.

    Article  CAS  Google Scholar 

  • Oertel D, Wu SH, Hirsch JA (1988) Electrical characteristics of cells and neuronal circuitry in the cochlear nuclei studied with intracellular recordings from brain slices. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 313–336.

    Google Scholar 

  • Oliver DL, Huerta MF (1992) Inferior and superior colliculi. In: Popper A, Fay R (eds) Springer Series in Auditory Research: The Anatomy of Mammalian Auditory Pathways. New York: Springer-Verlag.

    Google Scholar 

  • Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol. 4. Association and auditory cortices. New York: Plenum Press, pp. 3–61.

    Google Scholar 

  • Phillips DP, Brugge JF (1985) Progress in neurophysiology of sound localization. Ann Rev Psychol 36:245–274.

    Article  CAS  Google Scholar 

  • Phillips DP, Reale RA, Brugge JF (1991) Stimulus processing in the auditory cortex. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: Central Auditory System. New York: Raven Press.

    Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF (1990) Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. J Neurophys 64:888–902.

    CAS  Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF, McKay J (1990) Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. J Neurophys 64:872–887.

    CAS  Google Scholar 

  • Rhode WS (1991) Physiological-morphological properties of the cochlear nucleus. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Central Auditory System. New York: Raven Press.

    Google Scholar 

  • Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471.

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ, Jones EG (1973) The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J Comp Neurol 147:11–59.

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophys 30:769–793.

    CAS  Google Scholar 

  • Ryugo DK (1992) The auditory nerve. In: Popper A, Fay R (eds) Springer Handbook of Auditory Research, Vol. 1: The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag.

    Google Scholar 

  • Sachs MB, Winslow RL, Blackburn CC (1988) Representation of speech in the auditory periphery. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 747–774.

    Google Scholar 

  • Schreiner CE, Langner G (1988) Coding of temporal patterns in the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: The Neurobiological Bases of Hearing. New York: Wiley, pp. 337–362.

    Google Scholar 

  • Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Popper A, Fay R (eds) Springer Series in Auditory Research: The Anatomy of Mammalian Auditory Pathways. New York: Springer-Verlag.

    Google Scholar 

  • Seldon HL (1985) The anatomy of speech perception. Human auditory cortex. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol. 4. Association and auditory cortices. New York: Plenum Press, pp. 273–327.

    Google Scholar 

  • Semple MN, Aitkin LM, Calford MB, Pettigrew JD, Phillips DP (1983) Spatial receptive fields in the cat inferior colliculus. Hearing Res 10:203–215.

    Article  CAS  Google Scholar 

  • Smith RL (1988) Encoding of sound intensity by auditory neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 243–274.

    Google Scholar 

  • Steinschneider M, Arezzo J, Vaughan HGJ (1982) Speech evoked activity in the auditory radiations and cortex of the awake monkey. Brain Res 252:353–365.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1988) Auditory neuroethology and speech processing: complex-sound processing by combination-sensitive neurons. In: Edelman GM, Gall, WE, Cowan WM (eds) Auditory Function: The Neural Bases of Hearing. New York: Wiley, pp. 679–720.

    Google Scholar 

  • Suga N (1984) The extent to which biosonar information is represented in the bat auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function, New York: Wiley, pp. 315–373.

    Google Scholar 

  • Viemeister NF (1988) Psychophysical aspects of auditory intensity coding. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 213–241.

    Google Scholar 

  • Warr WB (1992) Efferent pathways. In: Popper A, Fay R (eds) Springer Handbook of Auditory Research, Vol. 1: The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag.

    Google Scholar 

  • Warren EH III, Liberman MC (1989a) Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hearing Res 37:105–122.

    Article  Google Scholar 

  • Warren EH III, Liberman MC (1989b) Effects of contralateral sound on auditory-nerve responses. I. Contribution of cochlear efferents. Hearing Res 37:89–104.

    Article  Google Scholar 

  • Webster DB (1992) An overview of mammalian auditory pathways with an emphasis on humans. In: Popper A, Fay R (eds) Springer Handbook of Research, Vol. 1: The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag.

    Google Scholar 

  • Wenthold RJ (1985) Glutamate and aspartate as neurotransmitters of the auditory nerve. In: Drescher DG (ed) Auditory Biochemistry. Springfield, IL: Charles Thomas, pp. 125–140.

    Google Scholar 

  • Wenthold RJ, Martin MR (1984) Neurotransmitters of the auditory nerve and central auditory system. In: Berlin CI (ed) Hearing Science. San Diego, CA: College-Hill, pp. 341–370.

    Google Scholar 

  • Wernicke C (1874) Der aphasische Symptomenkomplex. Breslau: Cohn & Weigert.

    Google Scholar 

  • Wever EG (1949) Theory of Hearing. New York: Wiley.

    Google Scholar 

  • Wever EG, Bray CW (1930) Present possibilities for auditory theory. Psychol Rev 37:365–380.

    Article  Google Scholar 

  • Winer J (1992) The functional architecture of the medial geniculate body and primary auditory cortex. In: Popper A, Fay R (eds) Springer Handbook of Auditory Research, Vol. 1: The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag.

    Google Scholar 

  • Winter P, Funkenstein HH (1973) The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus). Exp Brain Res 18:489–504.

    Article  PubMed  CAS  Google Scholar 

  • Woolsey CN, Walzl EM (1942) Topical projections of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bull Johns Hopkins Hosp 71:315–343.

    Google Scholar 

  • Yin TCT, Chan JCK (1988) Neural mechanisms underlying interaural time sensitivity to tones and noise. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 385–430.

    Google Scholar 

  • Yin TCT, Kuwada S (1984) Neuronal mechanisms of binaural interactions. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. New York: Wiley, pp. 263–314.

    Google Scholar 

  • Young ED, Brownell WE (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophys 39:282–300.

    CAS  Google Scholar 

  • Young ED, Shofner WP, White JA, Robert J-M, Voigt HF (1988) Response properties of cochlear nucleus neurons in relationship to physiological mechanisms. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. Neurobiological Bases of Hearing. New York: Wiley, pp. 277–312.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Brugge, J.F. (1992). An Overview of Central Auditory Processing. In: Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neurophysiology. Springer Handbook of Auditory Research, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2838-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2838-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97801-7

  • Online ISBN: 978-1-4612-2838-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics