Skip to main content

Normal Forms and Cut-Free Proofs as Natural Transformations

  • Conference paper

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 21))

Abstract

What equations can we guarantee that simple functional programs must satisfy, irrespective of their obvious defining equations? Equivalently, what non-trivial identifications must hold between lambda terms, thought-of as encoding appropriate natural deduction proofs ? We show that the usual syntax guarantees that certain naturality equations from category theory are necessarily provable. At the same time, our categorical approach addresses an equational meaning of cut-elimination and asymmetrical interpretations of cut-free proofs. This viewpoint is connected to Reynolds’ relational interpretation of parametricity ([27], [2]), and to the Kelly-Lambek-Mac Lane-Mints approach to coherence problems in category theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramsky, J. C. Mitchell, A. Scedrov, P. Wadler. Relators (to appear.).

    Google Scholar 

  2. E.S. Bainbridge, P. Freyd, A. Scedrov, and P. J. Scott. Functorial Polymorphism, Theoretical Computer Science 70 (1990), pp. 35–64.

    Article  MathSciNet  MATH  Google Scholar 

  3. E.S. Bainbridge, P. Freyd, A. Scedrov, and P. J. Scott. Functorial Polymorphism: Preliminary Report, Logical Foundations of Functional Programming, G. Huet, ed., Addison Wesley (1990), pp. 315–327.

    Google Scholar 

  4. M. Barr. *-Autonomous Categories. Springer LNM 752, 1979.

    Google Scholar 

  5. S. Eilenberg and G. M Kelly. A generalization of the functorial calculus, J. Algebra 3 (1966), pp. 366–375.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Felty . A Logic Program for Transforming Sequent Proofs to Natural Deduction Proofs. In: Proc. December 1989 Workshop on Extension of Logic Programming, ed. by P. Schroeder-Heister, Springer LNCS, to appear.

    Google Scholar 

  7. P. Freyd. Structural Polymorphism, Manuscript, Univ. of Pennsylvania (1989), to appear in Th. Comp. Science.

    Google Scholar 

  8. P. Freyd, J-Y. Girard, A. Scedrov, and P. J. Scott. Semantic Parametricity in Polymorphic Lambda Calculus, Proc. 3rd IEEE Symposium on Logic in Computer Science, Edinburgh, 1988.

    Google Scholar 

  9. J-Y. Girard . Normal functors, power series, and A-calculus, Ann. Pure and Applied Logic 37 (1986) pp. 129–177.

    Article  MathSciNet  Google Scholar 

  10. J-Y. Girard. The System F of Variables Types, Fifteen Years Later, Theoretical Computer Science, 45, pp. 159–192.

    Google Scholar 

  11. J-Y. Girard . Linear Logic, Theoretical Computer Science, 50, 1987, pp. 1–102.

    Article  MathSciNet  MATH  Google Scholar 

  12. J-Y. Girard, Y.Lafont, and P. Taylor. Proofs and Types, Cambridge Tracts in Theoretical Computer Science, 7, Cambridge University Press, 1989.

    Google Scholar 

  13. G. M. Kelly. Many-variable functorial calculus.I, Coherence in Categories Springer LNM 281, pp. 66–105.

    Google Scholar 

  14. G. M. Kelly and S. Mac Lane. Coherence in closed categories, J. Pure Appl. Alg. 1 (1971), pp. 97–140.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Lambek. Deductive Systems and Categories I, J. Math. Systems Theory 2 (1968), pp. 278–318.

    MathSciNet  Google Scholar 

  16. J. Lambek. Deductive Systems and Categories II, Springer LNM 86 (1969), pp. 76–122.

    MathSciNet  Google Scholar 

  17. J. Lambek. Multicategories Revisited, Contemp. Math. 92 (1989), pp. 217–239.

    MathSciNet  Google Scholar 

  18. J. Lambek . Logic without structural rules, Manuscript. (McGill University), 1990.

    Google Scholar 

  19. J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic, Cambridge Studies in Advanced Mathematics 7, Cambridge University Press, 1986.

    Google Scholar 

  20. S. Mac Lane. Categories for the Working Mathematician, Springer Graduate Texts in Mathematics, Springer-Verlag, 1971.

    MATH  Google Scholar 

  21. S. Mac Lane. Why commutative diagrams coincide with equivalent proofs, Contemp. Math. 13 (1982), pp. 387–401.

    MathSciNet  MATH  Google Scholar 

  22. G. E. Mints. Closed categories and the theory of proofs, J. Soviet Math 15 (1981), pp. 45–62.

    Article  MATH  Google Scholar 

  23. J. C. Mitchell and P. J. Scott. Typed Lambda Models and Cartesian Closed Categories, Contemp. Math. 92, pp. 301–316.

    Google Scholar 

  24. J.C. Mitchell and R. Harper, The Essence of ML, Proc. 15th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL), San Diego, 1988, pp. 28–46.

    Google Scholar 

  25. A. Pitts . Polymorphism is set-theoretic, constructively, in: Category Theory and Computer Science, Springer LNCS 283 (D. H. Pitt, ed.) (1987) pp. 12–39.

    Google Scholar 

  26. D. Prawitz. Natural Deduction, Almquist & Wiksell, Stockhom, 1965.

    MATH  Google Scholar 

  27. J.C.Reynolds . Types, Abstraction, and Parametric Polymorphism, in: Information Processing ’83, R. E. A. Mason, ed. North-Holland, 1983, pp. 513–523.

    Google Scholar 

  28. R. A. G. Seely. Categorical Semantics for Higher Order Polymorphic Lambda Calculus. J. Symb. Logic 52(1987), pp. 969–989.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. A. G. Seely. Linear Logic, *-Autonomous Categories, And Cofree Coalgebras. Con-temp. Math. 92(1989), pp. 371–382.

    MathSciNet  Google Scholar 

  30. R. Statman. Logical Relations and the Typed Lambda Calculus. Inf. and Control 65(1985), pp. 85–97.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, Vols. I and II. North-Holland, 1988.

    Google Scholar 

  32. P. Wadler. Theorems for Free! 4 th International Symposium on Functional Programming Languages and Computer Architecture, Assn. Comp. Machinery, London, Sept. 1989.

    Google Scholar 

  33. J. Zucker. The Correspondence between Cut-Elimination and Normalization, Ann. Math. Logic 7 (1974) pp. 1–112.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc

About this paper

Cite this paper

Girard, JY., Scedrov, A., Scott, P.J. (1992). Normal Forms and Cut-Free Proofs as Natural Transformations. In: Moschovakis, Y.N. (eds) Logic from Computer Science. Mathematical Sciences Research Institute Publications, vol 21. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2822-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2822-6_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7685-2

  • Online ISBN: 978-1-4612-2822-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics