0–1 Laws for Fragments of Second-Order Logic: An Overview

  • Phokion G. Kolaitis
  • Moshe Y. Vardi
Conference paper
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 21)

Abstract

The probability of a property on the collection of all finite relational structures is the limit as n → ∞ of the fraction of structures with n elements satisfying the property, provided the limit exists. It is known that the 0–1 law holds for any property expressible in first-order logic, i.e., the probability of any such property exists and is either 0 or 1. Moreover, the associated decision problem for the probabilities is solvable.

We investigate here fragments of existential second-order logic in which we restrict the patterns of first-order quantifiers. We focus on fragments in which the first-order part belongs to a prefix class. We show that the classifications of prefix classes of first-order logic with equality according to the solvability of the finite satisfiability problem and according to the 0–1 law for the corresponding ∑ 1 1 fragment are identical.

Keywords

Prefix ALMADEN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AH78]
    Abramson, F.D., Harrington, L.A.: Models without indiscernibles. J. Symbolic Logic 43(1978), pp. 572–600.MathSciNetMATHCrossRefGoogle Scholar
  2. [Aj83]
    Ajtai, M. : ∑ 1 1-formulas on finite structures. Ann. of Pure and Applied Logic 2443(1983), pp. 1–48. MathSciNetCrossRefGoogle Scholar
  3. [AU79]
    Aho, V.H., Ullman, J.D.: Universality of data retrieval languages. Proceedings 6th ACM Symp. on Principles of Programming Languages, 1979, pp. 110–117.Google Scholar
  4. [BH79]
    Blass, A., Harary, F.: Properties of almost all graphs and complexes. J. Graph Theory 3(1979), pp. 225–240.MathSciNetMATHCrossRefGoogle Scholar
  5. [Bo85]
    Bollobas, B: Random Graphs. Academic Press, 1985.Google Scholar
  6. [Ch52]
    Chernoff, H. : A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observation. Ann. Math. Stat. 23(1952), pp. 493–509. MathSciNetMATHCrossRefGoogle Scholar
  7. [CH82]
    Chandra, A., Harel, D.: Structure and Complexity of Relational Queries. J. Computer and Systems Sciences 25(1982), pp. 99–128.MATHCrossRefGoogle Scholar
  8. [CK81]
    Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28(1981), pp. 114–133. MathSciNetMATHCrossRefGoogle Scholar
  9. [Co88]
    Compton, K.J.: 0–1 laws in logic and combinatorics, in NATO Adv. Study Inst, on Algorithms and Order (I. Rival, ed.), D. Reidel, 1988, pp. 353–383.Google Scholar
  10. [Da84]
    Dalhlaus, E. : Reductions to NP-complete problems by interpretations. Logic and Machines: Decision Problems and Complexity (E. Börger et al., eds.), Springer-Verlag, Lecture Notes in Computer Science 171, 1984, pp. 357–365. Google Scholar
  11. [DG79]
    Dreben, D., and Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantificational Formulas. Addison-Wesley,1979.Google Scholar
  12. [Fa74]
    Fagin, R. : Generalized first-order spectra and polynomial time recognizable sets. Complexity of Computations (R. Karp, ed.), SIAM-AMS Proc. 7(1974), pp. 43–73. Google Scholar
  13. [Fa76]
    Fagin, R. : Probabilities on finite models. J. Symbolic Logic 41(1976), pp. 50–58. MathSciNetMATHCrossRefGoogle Scholar
  14. [Ga64]
    Gaifman, H.: Concerning measures in first-order calculi. Israel J. Math. 2(1964). pp. 1–18. MathSciNetMATHCrossRefGoogle Scholar
  15. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory of NP-Completeness, W.H. Freeman and Co., 1979.Google Scholar
  16. [GKLT69]
    Glebskii, Y.V., Kogan, D.I., Liogonkii. M.I., Talanov, V.A.: Range and degree of realizability of formulas in the restricted predicate calculus. Cybernetics 5(1969), pp. 142–154. CrossRefGoogle Scholar
  17. [Go84]
    Goldfarb, W.D. : The Gödel class with equality is unsolvable. Bull. Amer. Math. Soc. (New Series) 10(1984), pp. 113–115.MathSciNetMATHCrossRefGoogle Scholar
  18. [Gr83]
    Grandjean, E. : Complexity of the first-order theory of almost all structures. Information and Control 52(1983), pp. 180–204. MathSciNetCrossRefGoogle Scholar
  19. [Gu69]
    Gurevich, Y. : The decision problem for logic of predicates and operations. Algebra and Logic 8(1969), pp. 160–174.MATHCrossRefGoogle Scholar
  20. [Gu76]
    Gurevich, Y. : The decision problem for standard classes. J. Symbolic Logic 41(1976), pp. 460–464. MathSciNetMATHCrossRefGoogle Scholar
  21. [Gu84]
    Gurevich, Y. : Toward logic tailored for computational complexity. Computation and Proof Theory (M.M. Riether et al., eds.), Springer-Verlag, Lecture Notes in Math. 1104, 1984, pp. 175–216. CrossRefGoogle Scholar
  22. [GS83]
    Gurevich, Y., and Shelah, S.: Random models and the Gödel case of the decision problem. J. of Symbolic Logic 48(1983), pp. 1120–1124. MathSciNetMATHCrossRefGoogle Scholar
  23. [HIS85]
    Hartmanis, J., Immerman, N., Sewelson, J.:Sparse sets in NP-P - EXPTIME vs. NEXPTIME. Information and Control 65(1985), pp. 159–181.MathSciNetCrossRefGoogle Scholar
  24. [Im83]
    Immerman, N. : Languages which capture complexity classes. Proc. 15th ACM Symp. on Theory of Computing, Boston, 1983, pp. 347–354. Google Scholar
  25. [Im86]
    Immerman, N. : Relational queries computable in polynomial time. Information and Control 68(1986), pp. 86–104. MathSciNetMATHCrossRefGoogle Scholar
  26. [Ka87]
    Kaufmann, M.: A counterexample to the 0–1 law for existential monadic second-order logic. CLI Internal Note 32, Computational Logic Inc., Dec. 1987.Google Scholar
  27. [KS85]
    Kauffman, M., Shelah, S: On random models of finite power and monadic logic. Discrete Mathematics 54(1985), pp. 285–293.MathSciNetCrossRefGoogle Scholar
  28. [KV87]
    Kolaitis, P., Vardi, M.Y.: The decision problem for the probabilities of higher-order properties. Proc. 19th ACM Symp. on Theory of Computing, New York, May 1987, pp. 425T435.Google Scholar
  29. [KV90]
    Kolaitis, P., Vardi, M.Y.: 0–1 laws and decision problems for fragments of second-order logic. Information and Computation, in press.Google Scholar
  30. [Le79]
    Lewis, H.R.: Unsolvable Classes of Quantificational Formulas. Addison- Wesley, 1979.Google Scholar
  31. [NR77]
    Nešetřil, J., Rödl, V.: Partitions of finite relational and set systems. J. Combinatorial Theory A 22(1977), pp. 289–312.MATHCrossRefGoogle Scholar
  32. [NR83]
    Nešetřil, J., Rödl, V.: Ramsey classes of set systems. J. Combinatorial Theory A 34(1983), pp. 183–201. CrossRefGoogle Scholar
  33. [Po76]
    Pósa, L. : Hamiltonian circuits in random graphs. Discrete Math. 14(1976), pp. 359–364. MathSciNetMATHCrossRefGoogle Scholar
  34. [PS89]
    Pacholski, L., Szwast, W.: The 0–1 law fails for the class of existential second-order Gödel sentences with equality. Proc. 30th IEEE Symp. on Foundations of Computer Science, 1989, pp. 160–163.Google Scholar
  35. [PS90]
    Pacholski, L., Szwast, W.: A counterexample to the 0–1 law for existential second-order minimal Gödel sentences. Unpublished, 1990.Google Scholar
  36. [Ra28]
    Ramsey, F.P. : On a problem in formal logic. Proc. London Math. Soc. 30(1928). pp. 264–286.CrossRefGoogle Scholar
  37. [Tr50]
    Trakhtenbrot, B.A. : The impossibilty of an algorithm for the decision problem for finite models. Doklady Akademii Nauk SSR 70(1950), PP. 569–572. Google Scholar
  38. [Va82]
    Vardi. M.Y. : The complexity of relational query languages. Proc. 14th ACM Symp. on Theory of Computing, San Francisco, 1982, pp. 137–146. Google Scholar

Copyright information

© Springer-Verlag New York, Inc 1992

Authors and Affiliations

  • Phokion G. Kolaitis
    • 1
  • Moshe Y. Vardi
    • 2
  1. 1.University of CaliforniaSanta CruzUSA
  2. 2.IBM Almaden Research CenterUSA

Personalised recommendations