Advertisement

Icosahedral Glass Models for Quasicrystals

  • A. I. Goldman
Part of the Partially Ordered Systems book series (PARTIAL.ORDERED)

Abstract

The discovery of icosahedral phase alloys by Shechtman et al. [1] has provided us with an opportunity to reevaluate many of our long-held ideas and prejudices about the relationship between positional order, bond-orientational order, and periodic translational order in condensed matter systems. Traditionally, we have grouped solids into two categories. Glasses are viewed as solids which, at best, can be characterized as having short-range chemical order. Crystals, at the other extreme, are described as a periodic stacking of well-defined unit cells, identically decorated with atoms, into structures which have long-range periodic translational order.

Keywords

Diffuse Scattering Fibonacci Sequence Icosahedral Phase Icosahedral Symmetry Growth Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Shechtman et al.Phys. Rev. Lett. 53, 1951 (1985).ADSCrossRefGoogle Scholar
  2. [2]
    C. KittelIntroduction to Solid State PhysicsWiley, New York, 1986, P. 9.Google Scholar
  3. [3]
    For example, see D.P. Shoemaker and C.B. Shoemaker, inAperiodicity and Order, Vol..1: Introduction to Quasicrystalsedited by M.V. Jarić, Academic, Boston, 1988, pp. 2–40.Google Scholar
  4. [4]
    These electron diffraction patterns were kindly provided by K.F. Kelton and P. Gibbons at Washington University.Google Scholar
  5. [5]
    For the interested reader, the description and evolution of quasicrystalline structures may be found in the proceedings of three international conferences on quasicrystals held in Les Houches (1985), Beijing (1987), and Vista Hermosa, Mexico (1989). In addition, several series of reprints and review essays are available: C.L. Henley Comm. Condens. Matt. Phys. 23, 59 (1987);Google Scholar
  6. P.J. Steinhardt and S. Ostlund, eds.The Physics of QuasicrystalsPlenum, New York, 1987;MATHGoogle Scholar
  7. M.V. JarićAperiodicity and OrderVols. 1–3, Academic, Boston, 198–1989.Google Scholar
  8. [6]
    R. PenroseBull. Inst. Math. Appl. 10266 (1974);Google Scholar
  9. [6]
    M. GardnerSci. Amer. 236, 110 (1977).CrossRefGoogle Scholar
  10. [7]
    A.L. MackayPhysica 114A, 609 (1982);MathSciNetADSGoogle Scholar
  11. P. Kramer and R. NeriActa Cryst. A 40, 580 (1984).MathSciNetCrossRefMATHGoogle Scholar
  12. [8]
    D. Levine and P. SteinhardtPhys. Rev. Lett. 53, 2477 (1984).ADSCrossRefGoogle Scholar
  13. [9]
    For example, see Ref. 6.Google Scholar
  14. [10]
    To some degree, this obstacle can be overcome by including specific defects in the tilings termed “decapods”;Google Scholar
  15. G.Y. Onoda et al.Phys. Rev. Lett. 60, 2653 (1989);ADSCrossRefGoogle Scholar
  16. G.Y. Onoda et al.Phys. Rev. Lett. 62, 1210 (1989).ADSCrossRefGoogle Scholar
  17. However, this is still a point which generates strong debate;Google Scholar
  18. see M.V. Jarić and M. RonchettiPhys. Rev. Lett. 62, 1209 (1989).ADSCrossRefGoogle Scholar
  19. [11]
    M. Widom, K.J. Strandburg, and R.H. SwendsenPhys. Rev. Lett. 58, 706 (1987).ADSCrossRefGoogle Scholar
  20. [13]
    M. Widom, D.P. Deng, and C.L. HenleyPhys. Rev. Lett. 63, 310 (1989).ADSCrossRefGoogle Scholar
  21. [14]
    K.J. Strandburg, L.H. Tang, and M.V. JarićPhys. Rev. Lett. 63, 314 (1989).ADSCrossRefGoogle Scholar
  22. [15]
    L.H. TangPhys. Rev. Lett. 64, 2390 (1990).ADSCrossRefGoogle Scholar
  23. [16]
    For a general discussion, see P. Bak and A.I. Goldman, inAperiodicity and Order Vol. 1: Introduction to Quasicrystals,edited by M.V. Jarié, Academic, Boston, 1988, pp. 143–170 and references therein.Google Scholar
  24. [17]
    P. BakPhys. Rev. Lett. 56, 861 (1986).MathSciNetADSCrossRefGoogle Scholar
  25. [18]
    For a review of the hydrodynamic modes in quasicrystals, see T.C. Lubensky in Ref. 16, pp. 199–280.Google Scholar
  26. [19]
    P.A. Kalugin, A.Y. Kitaev, and L.C. LevitovJETP Lett. 41145 (1985);ADSGoogle Scholar
  27. V. ElserPhys. Rev. B 32, 4892 (1985);ADSCrossRefGoogle Scholar
  28. Acta Cryst. A4236 (1986);Google Scholar
  29. M. Duneau and A. KatzPhys. Rev. Lett. 54, 2688 (1985).MathSciNetADSCrossRefGoogle Scholar
  30. [20]
    P. Bancel et al.Phys. Rev. Lett. 54, 2422 (1985).ADSCrossRefGoogle Scholar
  31. [21]
    D. Shechtman and I. BlechMetall. Trans. A 16, 1005 (1985).CrossRefGoogle Scholar
  32. [22]
    P.W. Stephens and A.I. GoldmanPhys. Rev. Lett. 56, 1168 (1986);ADSCrossRefGoogle Scholar
  33. P.W. Stephens and A.I. GoldmanPhys. Rev. Lett. 57, 2331 (1986);ADSCrossRefGoogle Scholar
  34. P.W. Stephens and A.I. GoldmanPhys. Rev. Lett. 57, 2770 (1986).ADSCrossRefGoogle Scholar
  35. [23]
    A.I. Goldman and P.W. StephensPhys. Rev. B 37, 2826 (1988).ADSCrossRefGoogle Scholar
  36. [24]
    V. Elser, in theProceedings of the XVth International Colloquium on Group Theoretical Methods in Physicsedited by R. Gilmore and D. Feng, World Scientific, Singapore, 1987, p. 105.Google Scholar
  37. [25]
    V. Elser, inAperiodicity and Order, Vol. 2: Extended Icosahedral Structuresedited by M.V. Jarić and D. Gratias, Academic, Boston, 1989, pp. 105–136.Google Scholar
  38. [26]
    D.P. DiVincenzoJ. Phys. 47(Paris), Colloq. C3, 237 (1986).Google Scholar
  39. [27]
    J.L. Robertson and S.C. Moss, preprint, 1990.Google Scholar
  40. [28]
    P.W. Stephens, in Ref. 25, pp. 37–104.Google Scholar
  41. [29]
    A. Garg and D. LevinePhys. Rev. Lett. 60, 2160 (1988).ADSCrossRefGoogle Scholar
  42. [30]
    S. Hendricks and E. TellerJ. Chem. Phys. 10, 147 (1942).ADSCrossRefGoogle Scholar
  43. [31]
    V. Elser and C. HenleyPhys. Rev. Lett. 55, 2883 (1985);ADSCrossRefGoogle Scholar
  44. P. Guyot and M. AudierPhil. Mag. B 52, L15 (1985).CrossRefGoogle Scholar
  45. [32]
    M. Marcus and V. ElserPhil. Mag. B 54, L101 (1986).CrossRefGoogle Scholar
  46. [33]
    M. Cooper and K. RobinsonActa Cryst. 20614 (1966).CrossRefGoogle Scholar
  47. [34]
    E. Cherkashin et al.Soviet Phys. Cryst. 8, 681 (1964).Google Scholar
  48. [35]
    C. Guryan et al.Phys. Rev. B 37, 8495 (1988).ADSCrossRefGoogle Scholar
  49. [36]
    L.E. Levine, P.C. Gibbons, J.C. Holzer, and K.F. Kelton, preprint, 1990.Google Scholar
  50. [37]
    K.F. Kelton, P.C. Gibbons, and P.N. SabesPhys. Rev. B 38, 7810 (1988);ADSCrossRefGoogle Scholar
  51. P.C. Gibbons et al.Phil. Mag. B 59, 593 (1989).CrossRefGoogle Scholar
  52. [38]
    T. Ishimasa et al.Phil. Mag. Lett. 58, 157 (1988).ADSCrossRefGoogle Scholar
  53. [39]
    C. Guryan et al.Phys. Rev. Lett. 62, 2409 (1989).ADSCrossRefGoogle Scholar
  54. [40]
    P. BancelPhys. Rev. Lett. 63, 2741 (1989).ADSCrossRefGoogle Scholar
  55. [41]
    J. Devaud-Rzepski et al.Phil. Mag. B 60, 855 (1989).CrossRefGoogle Scholar
  56. [42]
    S. Ebalard and F. SpaepenJ. Mater. Res. 4, 39 (1989).ADSCrossRefGoogle Scholar
  57. [43]
    C.L. HenleyPhil. Mag. Lett. 58, 87 (1988).ADSCrossRefGoogle Scholar
  58. [44]
    A.I. Goldman et al.Phys. Rev. Lett. 61, 1962 (1988).ADSCrossRefGoogle Scholar
  59. [45]
    P.M. Horn et al.Phys. Rev. Lett. 57, 1444 (1986).ADSCrossRefGoogle Scholar
  60. [46]
    For example, see Ref. 18.Google Scholar
  61. [47]
    P. Heiney et al.Science 238, 660 (1987).ADSCrossRefGoogle Scholar
  62. [48]
    J.E.S. Socolar and D. WrightPhys. Rev. Lett. 59, 221 (1987).ADSCrossRefGoogle Scholar
  63. [49]
    C. Guryan, Ph.D. dissertation, SUNY at Stony Brook (1990).Google Scholar
  64. [50]
    N.K. Mukhopadhyay et al.Phil. Mag. Lett. 56, 121 (1987).ADSCrossRefGoogle Scholar
  65. [51]
    C. Dong et al.Scripta Metal. 20, 1155 (1986).ADSCrossRefGoogle Scholar
  66. [52]
    X. Zhang.and K.F. KeltonPhil. Mag. Lett.(accepted).Google Scholar
  67. [53]
    F. Denoyer et al.J. Phys. 48, (Paris), 1357 (1987).CrossRefGoogle Scholar
  68. [54]
    P.C. Gibbons et al., in Ref. 12, p. 516.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • A. I. Goldman

There are no affiliations available

Personalised recommendations