Skip to main content

Faceting in Bond-Oriented Glasses and Quasicrystals

  • Chapter
Bond-Orientational Order in Condensed Matter Systems

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 231 Accesses

Abstract

If there is any important lesson to be learned from the development of quasicrystals [1], it would be that one should be suspicious of conventional wisdoms. The field of quasicrystals is full of paradox. Nearly all its major developments are marked by puzzles questioning current wisdom. There have been many occasions upon which we have thought we understood the nature of quasicrystals, but were soon confronted with contradicting phenomena. In fact, up to this day, the real physical mechanism for the formation of quasicrystals remains a mystery. On the other hand, through the study of quasicrystals, we have both widened and deepened our understanding of many fundamental concepts and processes in condensed matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review of the development of quasicrystals before 1987, see The Physics of Quasicrystal, edited by P.J. Steinhardt and S. Ostlund, World Science, Singapore, 1987.

    Google Scholar 

  2. N.D. Mermin, D. Rokhsar, and D.C. Wright, Phys. Rev. Lett. 58, 2099–2010 (1987);

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Rokhsar, D.C. Wright, and N.D. Mermin, Acta Crys. A 44, 197–211 and references therein (1988).

    MathSciNet  Google Scholar 

  4. G.Y. Onoda, P.J. Steinhardt, D. DiVincenzo, and J.E.S. Socolar, Phys. Rev. Lett. 60, 2653 (1988); 62, 1210 (1989);

    Google Scholar 

  5. M. Jaric and M. Ronchetti, Phys. Rev. Lett. 62, 1209 (1989).

    Article  ADS  Google Scholar 

  6. V. Elser, Acta Cryst. A 42, 36 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  7. P.A. Heiney, P.A. Bancel, P.M. Horn, L.J. Jordon, S. LaPlaca, J. Angilello, and F.W. Gayle, Science 238, 660 (1987);

    Article  ADS  Google Scholar 

  8. P.M. Horn, W. Malzfedt, D.P. DiVincenzo, J. Toner, and R. Bambino, Phys. Rev. Lett. 57, 1444 (1986).

    Article  ADS  Google Scholar 

  9. P. Stephens and A. Goldman, Phys. Rev. Lett. 56, 1168 (1986).

    Article  ADS  Google Scholar 

  10. B. Dubost, J.M. Tanaka, P. Sainfort, and M. Audier, Nature (Lond.) 324, 48 (1986);

    Article  ADS  Google Scholar 

  11. F.W. Gayle, J. Mater. Res. 2, 1 (1987).

    Article  ADS  Google Scholar 

  12. P.J. Steinhardt and S. Ostlund, ibid., p. 314.

    Google Scholar 

  13. C.A. Gutym, A.I. Goldman, P.W. Stephens, K. Hiraga, A. Tsai, A. Inoue, and T. Masumoto, Phys. Rev. Lett. 62, 2409 (1989);

    Article  ADS  Google Scholar 

  14. P. Bancel, Phys. Rev. Lett. 63, 2741 (1989);

    Article  ADS  Google Scholar 

  15. A.-P. Tsai, A. Inoue, and T. Masumoto, Jpn. J. Appl. Phys. 26, L1505 (1987).

    Article  ADS  Google Scholar 

  16. T.L. Ho, J.A. Jaszczak, Y.H. Li, and W.F. Saam, Phys. Rev. Lett. 59, 1116 (1987).

    Article  ADS  Google Scholar 

  17. T.L. Ho, Y.H. Li, W.F. Saam, and J.A. Jaszczak, Phys. Rev. B 39, 10614 (1989).

    Article  ADS  Google Scholar 

  18. R. Lipowsky and C. Henley, Phys. Rev. Lett. 60, 23904 (1988).

    Google Scholar 

  19. A. Garg and D. Levine, Phys. Rev. Lett. 59, 1683 (1987).

    Article  ADS  Google Scholar 

  20. J.A. Jaszczak, W.F. Saam, and B. Yang, Phys. Rev. B 39, 9289 (1989).

    Article  ADS  Google Scholar 

  21. A.-P. Tsai, A. Inoue, and T. Masumoto, Jpn. J. Appl. Phys. 26, L1505 (1987);

    Article  ADS  Google Scholar 

  22. S. Ebalard and F. Spaepen, J. Mater. Res. 4, 39 (1989).

    Article  ADS  Google Scholar 

  23. W. Ohashi and F. Spaepen, Nature(Lond.) 330, 555 (1987).

    Article  ADS  Google Scholar 

  24. L. Bendersky, Phys. Rev. Lett. 55, 1461 (1985);

    Article  ADS  Google Scholar 

  25. R.J. Schaefer and L. Bendersky, Scr. Metall. 20, 745 (1986).

    Article  ADS  Google Scholar 

  26. K. Chattopadhyay, S. Lele, S. Ranganathan, G.N. Subbanna, and N. Thangaraj, Curr. Sci. 20, 895 (1985).

    Google Scholar 

  27. A.R. Kortan, F.A. Thiel, and H.S. Chen, Phys. Rev. B 40, 9397 (1989);

    Article  ADS  Google Scholar 

  28. A.R. Kortan, H.S. Chen, J.M. Parsey Jr., and L.C. Kimerling, J. Mater. Sci. 24, 1999 (1989).

    Article  ADS  Google Scholar 

  29. R.J. Hauy, Essai d’une the’orie sur la structure des cristaux, Paris, 1784; also see J.G. Burke, Origins of the Science of Crystals, University of California Press, Berkeley, Calif., 1966, p. 96.

    Google Scholar 

  30. For an excellent review on equilibrium crystal shapes, see M. Wortis, in Chemistry and Physics of Solid Surfaces, Vol. VII, edited by R. Vanselow, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  31. A.A. Chernov, Modern Crystallography III, Springer-Verlag, Berlin, 1984, pp. 45–47.

    Google Scholar 

  32. L.D. Landau, Collected Papers of L.D. Landau, edited by D. Terhaar, Gordon and Breach, New York, 1965, pp. 540–545.

    Google Scholar 

  33. C. Herring, Phys. Rev. 82, 87 (1951).

    Article  ADS  MATH  Google Scholar 

  34. K. Ingersent and P.J. Steinhardt, Phys. Rev. Lett. 60, 2444 (1988); Phys. Rev. B 39, 980 (1989).

    Google Scholar 

  35. N.G. deBruijn, Proc. Koninklijke Nederlandse Akadamie van Wetenschappen Series A 84 (= Indagationes Mathematics 43), 39 (1981).

    Google Scholar 

  36. F. Gahler and J. Rhyner, J. Phys. A 19, 267–277 (1986). A particular simple derivation of the equivalence between the projection method and dual method is given in D.A. Rabson, T.L. Ho, and N.D. Mermin, Acta Cryst. A 44, 678 (1988).

    Google Scholar 

  37. V. Elser, in Proceedings of the 15th International Colloquium on Group Theoretical Methods in Physics, Philadelphia, edited by R. Gilmore and D.H. Feng, World Scientific, Singapore, 1987, pp. 162–183;

    Google Scholar 

  38. C. Henley, Comm. Condens. Mater. Phys. B, vol. XIII, 58 (1987);

    Google Scholar 

  39. M. Widom, D.P. Deng, and C.L. Henley, Phys. Rev. Lett. 63, 310 (1989);

    Article  ADS  Google Scholar 

  40. K. Strandburg, L.H. Tang, and M.V. Jarie, Phys. Rev. Lett. 63, 314 (1989).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ho, TL. (1992). Faceting in Bond-Oriented Glasses and Quasicrystals. In: Strandburg, K.J. (eds) Bond-Orientational Order in Condensed Matter Systems. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2812-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2812-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7680-7

  • Online ISBN: 978-1-4612-2812-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics