Cation Exchange and A1 Mobilization in Soils

  • D. D. Richter
  • D. W. Johnson
  • K. H. Dai
Part of the Ecological Studies book series (ECOLSTUD, volume 91)


Predicting the equilibria of cations distributed between soil solutions and exchange sites is a classical soil chemistry problem. Interest in such cation distribution problems has been motivated by a need to improve fertilization to maintain well-balanced concentrations of soil exchangeable Ca, Mg, and K for optimum crop growth; to control potentially toxic Al with Ca and Mg additions in acidic agronomic soils; and to control excess Na with Ca amendments in irrigated soils. The effects of atmospheric deposition of pollutant sulfate on soils is a similar problem and should alter cation distributions between solutions and exchange sites in predictable ways. The consequences of sulfate deposition are potentially serious: displacement of greater concentrations of exchangeable Al, Ca, and Mg (polyvalent cations) into soil solutions, and long-term depletions of exchangeable nutrient cations, for example, Ca and Mg, in highly weathered soils with limited mineral weathering rates.


Soil Solution Atmospheric Deposition Base Cation Acid Deposition Base Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsen G. 1980. Acid precipitation, plant nutrients, forest growth. In Drablos D., Tollan A. (eds.) SNSF Proceedings, Ecological Impact of Acid Precipitation, pp. 58–63, March 11–14, 1980, Sandefjord, Norway. Johs. Grefslie Trykkeri, Mysen, NorwayGoogle Scholar
  2. Anderson S.B. 1988. Long-term Changes (1930–32 to 1984) in the Acid-Base Status of Forest Soils in the Adirondacks of New York. Ph. D. Dissertation, Department of Geology, University of Pennsylvania, PhiladelphiaGoogle Scholar
  3. Baes C.F. III, McLaughlin S.B. 1984. Trace elements in tree rings: evidence of recent and historical air pollution. Science 224: 494 – 497PubMedCrossRefGoogle Scholar
  4. Baes C.F. III, McLaughlin S.B. 1986. Multielemental Analysis of Tree Rings: A Survey of Coniferous Trees in the Great Smoky Mountins National Park. ORNL- 6155, Oak Ridge National Laboratory, Oak Ridge, TenneseeGoogle Scholar
  5. Belkevitch P.J., Chistova L.R. 1963. Exchange capacity of peat with respect to alkali and alkaline earths. In Robertson R.A. (ed.) Proceedings of the 3rd International Peat Congress, Leningrad, pp. 904 – 918Google Scholar
  6. Bloom P.R., Weaver R.M., McBride M.B. 1978. The spectrophotometric and fluorometric determination of aluminum with 8-hydroxyquinoline and butyl acetate extraction. Soil Sci. Soc. Am. J. 42: 713 – 716Google Scholar
  7. Bohn H.L., McNeal B.L., O’Connor G.A. 1985. Soil Chemistry. Wiley, New YorkGoogle Scholar
  8. Bondietti E.A., Baes C.F. III, McLaughlin S.B. 1989. Radial trends in cation ratios in tree rings as indicators of the impact of atmospheric deposition on forests. Can. J. For. Res 19: 586 – 594CrossRefGoogle Scholar
  9. Bondietti E.A., Momoshima N., Shortle W.C., Smith K.T. 1990. A historical perspective on changes in divalent cation availability to red spruce in relationship to acidic deposition. Can. J. For. Res. 20: 1850 – 1858CrossRefGoogle Scholar
  10. Cole D.W., Rapp M. 1981. Elemental cycling in forest ecosystems. In Reichle D.E. (ed.) Dynamic Properties of Forest Ecosystems. IBP-23, Cambridge University Press, Cambridge, pp. 342 – 409Google Scholar
  11. Cosby B.J., Hornberger G.M., Galloway J.N., Wright R.F. 1985. Modeling the effects of acid deposition: assessment of a lumped-parameter model of soil water and streamwater chemistry. Water Resour. Res. 21: 51 – 63Google Scholar
  12. Dougan W.K., Wilson A.L. 1974. The absorptiometry determination of aluminum in water: a comparison of some chromogenic reagents and the development of an improved method. Analyst 99: 413 – 430PubMedCrossRefGoogle Scholar
  13. Driscoll C.T., van Breeman N., Mulder J. 1985. Aluminum chemistry in a forested Spodosol. Soil Sci. Soc. Am. J. 49: 1584 – 1589Google Scholar
  14. Federer C.A., Hornbeck J.W., Tritton L.M., Martin C.W., Pierce R.S., Smith C.T. 1989. Environ. Manage. 13: 593 – 601CrossRefGoogle Scholar
  15. Friedland A.J., Hawley G.J., Gregory R.A. 1988. Red spruce (Picea rubensSarg.) foliar chemistry in Northern Vermont and New York, USA. Plant Soil 105: 189 – 193CrossRefGoogle Scholar
  16. Heimburger C.C. 1934. Forest-type studies in the Adirondack region. Cornell (Ithaca) Univ. Agr. Exp. Sta. Mem. 165Google Scholar
  17. Huettl Z.F 1986. Forest fertilization results from Germany, France, the Nordic Countries. In The Fertilization Society Proc No. 250, pp. 1 – 40. Greenhill House, LondonGoogle Scholar
  18. Husar R.B. 1986. Emissions of sulfur dioxide and nitrogen dioxides and trends for eastern North America. In Acid Deposition Long-Term Trends. National Research Council, National Academy Press, Washington, D.C., Chap. 2, pp. 49– 92Google Scholar
  19. Isaac R.A., Kerber J.D. 1975. Atomic absorption and flame photometry: techniques and uses in soils, plant, water analysis. In Walsh L.M. (ed.) Instrumental Methods for Analysis of Soil and Plant Tissue. Soil Science Society America, Madison, Wisconsin, pp. 17 – 37Google Scholar
  20. Jenny H. 1980. The Soil Resource: Origin and Behavior. Springer-Verlag, New York, p. 377Google Scholar
  21. Johnson D.W., Richter D.D., Lovett G.M., Lindberg S.E. 1985. The effects of atmospheric deposition on potassium, calcium, magnesium cycling in two deciduous forests. Can. J. For. Res. 15: 773 – 782CrossRefGoogle Scholar
  22. Johnson D.W., Cole D.W., Gessel S.P., Singer M.J., Minden R.V. 1977. Carbonic acid leaching in a tropical, temperate, subalpine, northern forest soil. Alpine Res. 9: 329 – 343CrossRefGoogle Scholar
  23. Joslin J.D., Kelly J.M., Wolfe M.H., Rustad L.E. 1988. Elemental patterns in roots and foliage of mature spruce across a gradient of soil aluminum. Water Air Soil Pollut. 40: 375 – 390Google Scholar
  24. Kelly M.J., Mays P.A. 1989. Root zone physical and chemical characteristics in southeastern spruce fir stands. Soil Sci. Soc. Am. J. 53: 1248 – 1255Google Scholar
  25. Lindsay W.L. 1979. Chemical Equilibria in Soils. Wiley, New YorkGoogle Scholar
  26. Lunt H.A. 1932. Profile characteristics of New England forest soils. Conn. Agr. Exp. Sta. Bull. 342Google Scholar
  27. Mattson S., Karlsson N. 1944. The pedography of hydrologic soil series: VI. The composition and base status of the vegetation in relationship to the soil. Ann. Agr. Coll. Sweden 12: 186 – 203Google Scholar
  28. McBride M.B., Bloom P.R. 1977. Adsorption of aluminum by a smectite: II. An Al3+ Ca2+ Exchange Model. Soil Sci. Soc. Am. J. 41: 1073 – 1077Google Scholar
  29. McLaughlin S.B., Andersen C.P., Edwards R.W.K., Layton P.A. 1990. Seasonal patterns of photosynthsis and respiration of red spruce saplings from two elevations in declining southern Appalachian stands. Can. J. For. Res. 20: 485 – 495CrossRefGoogle Scholar
  30. McLaughlin S.B., Andersen C.P., Edwards R.W.K., Layton P.A. 1990. Seasonal patterns of photosynthsis and respiration of red spruce saplings from two elevations in declining southern Appalachian stands. Can. J. For. Res. 20: 485 – 495CrossRefGoogle Scholar
  31. McLaughlin S.B., Downing D.J., Biasing T.J., Cook E.R., Adams H.S. 1987. An analysis of climate and competition as contributors to decline of red spruce in high elevation Appalachian forests of the eastern United States. Oecologia 72: 487 – 501CrossRefGoogle Scholar
  32. Momoshima N., Bondietti E.A. 1990. Cation binding in wood: applications to understanding historical changes in divalent cation availability to red spruce. Can. J. For. Res. 20: 1840 – 1849CrossRefGoogle Scholar
  33. Ponomareva V.V. 1969. Theory of Podzolization. Israel Program for Scientific Translations. TT 68–50442, National Technical Information Service, Springfield, VirginiaGoogle Scholar
  34. Reuss J.O. 1983. Implications of the calcium-aluminum exchange system for the effect of acid precipitation on soils. J. Environ. Qual. 12: 591 – 595CrossRefGoogle Scholar
  35. Reuss J.O., Johnson D.W. 1986. Acid Deposition, Soil and Waters. Ecological Studies Series No. 50, Springer-Verlag, New YorkGoogle Scholar
  36. Richter D.D. 1984. Comment on comment on “Acid precipitation in historical perspective” and “Effects of acid precipitation.” Environ. Sci. Technol. 18: 632 – 634CrossRefGoogle Scholar
  37. Richter D.D. 1986. Sources of acidity in some forested Udults. Soil Sci. Soc. Am. J. 50: 1584 – 1589Google Scholar
  38. Richter, D.D., D.W. Johnson, D.E. Todd 1983. Atmospheric sulfur deposition, neutralization, ion leaching in two deciduous forest ecosystems. J. Environ. Qual. 12: 263 – 270CrossRefGoogle Scholar
  39. Richter D.D., King K.S., Witter J.A. 1989. Moisture and nutrient status of extremely acid Umbrepts in the Black Mountains of North Carolina. Soil Sci. Soc. Am. J. 53: 1222 – 1228Google Scholar
  40. Richter D.D., Comer P.J., King K.S., Sawin H.S., Wright D.W. 1988. Effects of low ionic strength solutions on pH of acid forested soils. Soil Sci. Soc. Am. J. 52: 261 – 264Google Scholar
  41. Robarge W.P., Pye J.M., Bruck R.J. 1989. Foliar elemental composition of spruce- fir in the southern blue ridge province. Plant Soil 114: 19 – 34CrossRefGoogle Scholar
  42. Russell E.W. 1973. Soil Conditions and Plant Growth, 10th Ed. Longman, LondonGoogle Scholar
  43. Schachtschabel P. 1940. Untersuchungen uber die Sorption de Tonmineralien und organischen Boden-Kolloide, und die Bestimmung des Anteils dieser Kolloide an der Sorption im Boden. Kolloid-Beshefte 51: 199 – 276Google Scholar
  44. Schofield R.K. 1947. A ratio law governing the equilibrium of cations in the soil solution. In 11th International Congress of Pure and Applied Chemistry, Pergamon, Oxford, pp. 257 – 261Google Scholar
  45. Schofield R.K. 1947. A ratio law governing the equilibrium of cations in the soil solution. In 11th International Congress of Pure and Applied Chemistry, Pergamon, Oxford, pp. 257 – 261Google Scholar
  46. Shortle W.C., Smith K.T. 1988. Aluminum-induced calcium deficiency syndrome in declining red spruce. Science 240: 239 – 240CrossRefGoogle Scholar
  47. Sjors H. 1961. Some chemical properties of the humus layer in Swedish natural soils. Bull. R. Sch. Forest, Stockholm, Sweden, No. 37Google Scholar
  48. Skartveit A. 1980. Observed relationships between ionic composition of precipitation and runoff. In Drablos D., Tollan A. (eds.) Ecological Impact of Acid Precipitation, Proceedings of the International Conference on Ecological Impacts of Acid Precipitation, pp. 242 – 244. SNSF Project, Oslo, NorwayGoogle Scholar
  49. Smith W.H. 1974. Air pollution—Effects on the structure and function of the temperate forest ecosystem. Environ. Pollut. 6: 111 – 129CrossRefGoogle Scholar
  50. Sucoff E., Thorton F.C., Joslin J.D. 1990. Sensitivity of tree seedlings to aluminum: in honey locust. J. Environ. Qual 19: 163 – 187CrossRefGoogle Scholar
  51. Sullivan T., Seip H.M., Muniz I.P. 1986. A comparison of frequently used methods for the determination of aqueous aluminum. Int. J. Environ. Chem. 26: 61 – 75CrossRefGoogle Scholar
  52. Sumner M.E., Marques J.M. 1968. Applicability of Schofield’s ratio law to a ferrallitic clay. Agrochimica 22: 191 – 195Google Scholar
  53. Swan H.S.D. 1971. Relationship between Nutrient Supply, Growth, Nutrient Concentrations in Foliage of White and Red Spruce. Woodlands Paper No. 29, Pulp and Paper Research Institute of Canada, OttowaGoogle Scholar
  54. Swan H.S.D. 1972. Foliar Nutrient Concentrations in Norway Spruce as Indicators of Tree Nutrient Status and Fertilizer Requirement. Woodlands Report WR/40, Pulp and Paper Research Institute of Canada, OttowaGoogle Scholar
  55. Tamm C.O., Hallbacken L. Changes in soil acidity in two forest areas with different acid deposition: 1920s to 1980s. Ambio 17:56–61Google Scholar
  56. Thomas G. 1982. Exchangeable cations. In Page A.L. (ed.) Methods of Soil Analysis, Part 2, 2d Ed. Agronomy 9: 191 – 195Google Scholar
  57. Ulrich B. 1980. Production and consumption of hydrogen ions in the ecosphere. In Hutchinson T.C., Havas M. (eds.) Effects of Acid Precipitation on Terrestrial Ecosystems. Plenum, New York, pp. 255 – 282Google Scholar
  58. Ulrich B. 1983. Soil acidity and its relations to acid deposition. In Ulrich B., Pankrath J. (eds.) Effects of Accumulation of Air Pollutants in Forest Ecosystems. D. Reidel, Boston, pp. 127 – 146Google Scholar
  59. Ulrich B., Mayer R., Khanana P.K. 1980. Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci. 130: 193 – 199CrossRefGoogle Scholar
  60. van Miegroet H., Cole D.W. 1985. Acidification sources in red alder and Douglas- fir soils—importance of nitrification. Soil Sci. Soc. Am. J. 49: 1274 – 1279Google Scholar
  61. van Breeman H., Burrough P.A., Velthorst E.J., Van Dobben H.F., deWit T., Ridder T.B., Reijnders H.F.R. 1982. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature, (London) 299: 548 – 550CrossRefGoogle Scholar
  62. Wiklander L., Andersson A. 1972. The replacing efficiency of hydrogen ion in relation to base saturation and pH. Geoderma 7: 159 – 165CrossRefGoogle Scholar
  63. Wright R.F., Norton S.A., Brakke D.F., Frogner T. 1988. Experimental verification of episodic acidification of freshwaters by sea salts. Nature (London) 334: 422 – 424CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • D. D. Richter
  • D. W. Johnson
  • K. H. Dai

There are no affiliations available

Personalised recommendations