Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 91))

Abstract

Predicting the equilibria of cations distributed between soil solutions and exchange sites is a classical soil chemistry problem. Interest in such cation distribution problems has been motivated by a need to improve fertilization to maintain well-balanced concentrations of soil exchangeable Ca, Mg, and K for optimum crop growth; to control potentially toxic Al with Ca and Mg additions in acidic agronomic soils; and to control excess Na with Ca amendments in irrigated soils. The effects of atmospheric deposition of pollutant sulfate on soils is a similar problem and should alter cation distributions between solutions and exchange sites in predictable ways. The consequences of sulfate deposition are potentially serious: displacement of greater concentrations of exchangeable Al, Ca, and Mg (polyvalent cations) into soil solutions, and long-term depletions of exchangeable nutrient cations, for example, Ca and Mg, in highly weathered soils with limited mineral weathering rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen G. 1980. Acid precipitation, plant nutrients, forest growth. In Drablos D., Tollan A. (eds.) SNSF Proceedings, Ecological Impact of Acid Precipitation, pp. 58–63, March 11–14, 1980, Sandefjord, Norway. Johs. Grefslie Trykkeri, Mysen, Norway

    Google Scholar 

  • Anderson S.B. 1988. Long-term Changes (1930–32 to 1984) in the Acid-Base Status of Forest Soils in the Adirondacks of New York. Ph. D. Dissertation, Department of Geology, University of Pennsylvania, Philadelphia

    Google Scholar 

  • Baes C.F. III, McLaughlin S.B. 1984. Trace elements in tree rings: evidence of recent and historical air pollution. Science 224: 494 – 497

    Article  PubMed  CAS  Google Scholar 

  • Baes C.F. III, McLaughlin S.B. 1986. Multielemental Analysis of Tree Rings: A Survey of Coniferous Trees in the Great Smoky Mountins National Park. ORNL- 6155, Oak Ridge National Laboratory, Oak Ridge, Tennesee

    Google Scholar 

  • Belkevitch P.J., Chistova L.R. 1963. Exchange capacity of peat with respect to alkali and alkaline earths. In Robertson R.A. (ed.) Proceedings of the 3rd International Peat Congress, Leningrad, pp. 904 – 918

    Google Scholar 

  • Bloom P.R., Weaver R.M., McBride M.B. 1978. The spectrophotometric and fluorometric determination of aluminum with 8-hydroxyquinoline and butyl acetate extraction. Soil Sci. Soc. Am. J. 42: 713 – 716

    CAS  Google Scholar 

  • Bohn H.L., McNeal B.L., O’Connor G.A. 1985. Soil Chemistry. Wiley, New York

    Google Scholar 

  • Bondietti E.A., Baes C.F. III, McLaughlin S.B. 1989. Radial trends in cation ratios in tree rings as indicators of the impact of atmospheric deposition on forests. Can. J. For. Res 19: 586 – 594

    Article  CAS  Google Scholar 

  • Bondietti E.A., Momoshima N., Shortle W.C., Smith K.T. 1990. A historical perspective on changes in divalent cation availability to red spruce in relationship to acidic deposition. Can. J. For. Res. 20: 1850 – 1858

    Article  Google Scholar 

  • Cole D.W., Rapp M. 1981. Elemental cycling in forest ecosystems. In Reichle D.E. (ed.) Dynamic Properties of Forest Ecosystems. IBP-23, Cambridge University Press, Cambridge, pp. 342 – 409

    Google Scholar 

  • Cosby B.J., Hornberger G.M., Galloway J.N., Wright R.F. 1985. Modeling the effects of acid deposition: assessment of a lumped-parameter model of soil water and streamwater chemistry. Water Resour. Res. 21: 51 – 63

    CAS  Google Scholar 

  • Dougan W.K., Wilson A.L. 1974. The absorptiometry determination of aluminum in water: a comparison of some chromogenic reagents and the development of an improved method. Analyst 99: 413 – 430

    Article  PubMed  CAS  Google Scholar 

  • Driscoll C.T., van Breeman N., Mulder J. 1985. Aluminum chemistry in a forested Spodosol. Soil Sci. Soc. Am. J. 49: 1584 – 1589

    Google Scholar 

  • Federer C.A., Hornbeck J.W., Tritton L.M., Martin C.W., Pierce R.S., Smith C.T. 1989. Environ. Manage. 13: 593 – 601

    Article  Google Scholar 

  • Friedland A.J., Hawley G.J., Gregory R.A. 1988. Red spruce (Picea rubensSarg.) foliar chemistry in Northern Vermont and New York, USA. Plant Soil 105: 189 – 193

    Article  CAS  Google Scholar 

  • Heimburger C.C. 1934. Forest-type studies in the Adirondack region. Cornell (Ithaca) Univ. Agr. Exp. Sta. Mem. 165

    Google Scholar 

  • Huettl Z.F 1986. Forest fertilization results from Germany, France, the Nordic Countries. In The Fertilization Society Proc No. 250, pp. 1 – 40. Greenhill House, London

    Google Scholar 

  • Husar R.B. 1986. Emissions of sulfur dioxide and nitrogen dioxides and trends for eastern North America. In Acid Deposition Long-Term Trends. National Research Council, National Academy Press, Washington, D.C., Chap. 2, pp. 49– 92

    Google Scholar 

  • Isaac R.A., Kerber J.D. 1975. Atomic absorption and flame photometry: techniques and uses in soils, plant, water analysis. In Walsh L.M. (ed.) Instrumental Methods for Analysis of Soil and Plant Tissue. Soil Science Society America, Madison, Wisconsin, pp. 17 – 37

    Google Scholar 

  • Jenny H. 1980. The Soil Resource: Origin and Behavior. Springer-Verlag, New York, p. 377

    Google Scholar 

  • Johnson D.W., Richter D.D., Lovett G.M., Lindberg S.E. 1985. The effects of atmospheric deposition on potassium, calcium, magnesium cycling in two deciduous forests. Can. J. For. Res. 15: 773 – 782

    Article  CAS  Google Scholar 

  • Johnson D.W., Cole D.W., Gessel S.P., Singer M.J., Minden R.V. 1977. Carbonic acid leaching in a tropical, temperate, subalpine, northern forest soil. Alpine Res. 9: 329 – 343

    Article  CAS  Google Scholar 

  • Joslin J.D., Kelly J.M., Wolfe M.H., Rustad L.E. 1988. Elemental patterns in roots and foliage of mature spruce across a gradient of soil aluminum. Water Air Soil Pollut. 40: 375 – 390

    CAS  Google Scholar 

  • Kelly M.J., Mays P.A. 1989. Root zone physical and chemical characteristics in southeastern spruce fir stands. Soil Sci. Soc. Am. J. 53: 1248 – 1255

    Google Scholar 

  • Lindsay W.L. 1979. Chemical Equilibria in Soils. Wiley, New York

    Google Scholar 

  • Lunt H.A. 1932. Profile characteristics of New England forest soils. Conn. Agr. Exp. Sta. Bull. 342

    Google Scholar 

  • Mattson S., Karlsson N. 1944. The pedography of hydrologic soil series: VI. The composition and base status of the vegetation in relationship to the soil. Ann. Agr. Coll. Sweden 12: 186 – 203

    Google Scholar 

  • McBride M.B., Bloom P.R. 1977. Adsorption of aluminum by a smectite: II. An Al3+ Ca2+ Exchange Model. Soil Sci. Soc. Am. J. 41: 1073 – 1077

    CAS  Google Scholar 

  • McLaughlin S.B., Andersen C.P., Edwards R.W.K., Layton P.A. 1990. Seasonal patterns of photosynthsis and respiration of red spruce saplings from two elevations in declining southern Appalachian stands. Can. J. For. Res. 20: 485 – 495

    Article  CAS  Google Scholar 

  • McLaughlin S.B., Andersen C.P., Edwards R.W.K., Layton P.A. 1990. Seasonal patterns of photosynthsis and respiration of red spruce saplings from two elevations in declining southern Appalachian stands. Can. J. For. Res. 20: 485 – 495

    Article  CAS  Google Scholar 

  • McLaughlin S.B., Downing D.J., Biasing T.J., Cook E.R., Adams H.S. 1987. An analysis of climate and competition as contributors to decline of red spruce in high elevation Appalachian forests of the eastern United States. Oecologia 72: 487 – 501

    Article  Google Scholar 

  • Momoshima N., Bondietti E.A. 1990. Cation binding in wood: applications to understanding historical changes in divalent cation availability to red spruce. Can. J. For. Res. 20: 1840 – 1849

    Article  Google Scholar 

  • Ponomareva V.V. 1969. Theory of Podzolization. Israel Program for Scientific Translations. TT 68–50442, National Technical Information Service, Springfield, Virginia

    Google Scholar 

  • Reuss J.O. 1983. Implications of the calcium-aluminum exchange system for the effect of acid precipitation on soils. J. Environ. Qual. 12: 591 – 595

    Article  CAS  Google Scholar 

  • Reuss J.O., Johnson D.W. 1986. Acid Deposition, Soil and Waters. Ecological Studies Series No. 50, Springer-Verlag, New York

    Google Scholar 

  • Richter D.D. 1984. Comment on comment on “Acid precipitation in historical perspective” and “Effects of acid precipitation.” Environ. Sci. Technol. 18: 632 – 634

    Article  CAS  Google Scholar 

  • Richter D.D. 1986. Sources of acidity in some forested Udults. Soil Sci. Soc. Am. J. 50: 1584 – 1589

    CAS  Google Scholar 

  • Richter, D.D., D.W. Johnson, D.E. Todd 1983. Atmospheric sulfur deposition, neutralization, ion leaching in two deciduous forest ecosystems. J. Environ. Qual. 12: 263 – 270

    Article  CAS  Google Scholar 

  • Richter D.D., King K.S., Witter J.A. 1989. Moisture and nutrient status of extremely acid Umbrepts in the Black Mountains of North Carolina. Soil Sci. Soc. Am. J. 53: 1222 – 1228

    Google Scholar 

  • Richter D.D., Comer P.J., King K.S., Sawin H.S., Wright D.W. 1988. Effects of low ionic strength solutions on pH of acid forested soils. Soil Sci. Soc. Am. J. 52: 261 – 264

    CAS  Google Scholar 

  • Robarge W.P., Pye J.M., Bruck R.J. 1989. Foliar elemental composition of spruce- fir in the southern blue ridge province. Plant Soil 114: 19 – 34

    Article  CAS  Google Scholar 

  • Russell E.W. 1973. Soil Conditions and Plant Growth, 10th Ed. Longman, London

    Google Scholar 

  • Schachtschabel P. 1940. Untersuchungen uber die Sorption de Tonmineralien und organischen Boden-Kolloide, und die Bestimmung des Anteils dieser Kolloide an der Sorption im Boden. Kolloid-Beshefte 51: 199 – 276

    CAS  Google Scholar 

  • Schofield R.K. 1947. A ratio law governing the equilibrium of cations in the soil solution. In 11th International Congress of Pure and Applied Chemistry, Pergamon, Oxford, pp. 257 – 261

    Google Scholar 

  • Schofield R.K. 1947. A ratio law governing the equilibrium of cations in the soil solution. In 11th International Congress of Pure and Applied Chemistry, Pergamon, Oxford, pp. 257 – 261

    Google Scholar 

  • Shortle W.C., Smith K.T. 1988. Aluminum-induced calcium deficiency syndrome in declining red spruce. Science 240: 239 – 240

    Article  Google Scholar 

  • Sjors H. 1961. Some chemical properties of the humus layer in Swedish natural soils. Bull. R. Sch. Forest, Stockholm, Sweden, No. 37

    Google Scholar 

  • Skartveit A. 1980. Observed relationships between ionic composition of precipitation and runoff. In Drablos D., Tollan A. (eds.) Ecological Impact of Acid Precipitation, Proceedings of the International Conference on Ecological Impacts of Acid Precipitation, pp. 242 – 244. SNSF Project, Oslo, Norway

    Google Scholar 

  • Smith W.H. 1974. Air pollution—Effects on the structure and function of the temperate forest ecosystem. Environ. Pollut. 6: 111 – 129

    Article  CAS  Google Scholar 

  • Sucoff E., Thorton F.C., Joslin J.D. 1990. Sensitivity of tree seedlings to aluminum: in honey locust. J. Environ. Qual 19: 163 – 187

    Article  CAS  Google Scholar 

  • Sullivan T., Seip H.M., Muniz I.P. 1986. A comparison of frequently used methods for the determination of aqueous aluminum. Int. J. Environ. Chem. 26: 61 – 75

    Article  CAS  Google Scholar 

  • Sumner M.E., Marques J.M. 1968. Applicability of Schofield’s ratio law to a ferrallitic clay. Agrochimica 22: 191 – 195

    Google Scholar 

  • Swan H.S.D. 1971. Relationship between Nutrient Supply, Growth, Nutrient Concentrations in Foliage of White and Red Spruce. Woodlands Paper No. 29, Pulp and Paper Research Institute of Canada, Ottowa

    Google Scholar 

  • Swan H.S.D. 1972. Foliar Nutrient Concentrations in Norway Spruce as Indicators of Tree Nutrient Status and Fertilizer Requirement. Woodlands Report WR/40, Pulp and Paper Research Institute of Canada, Ottowa

    Google Scholar 

  • Tamm C.O., Hallbacken L. Changes in soil acidity in two forest areas with different acid deposition: 1920s to 1980s. Ambio 17:56–61

    Google Scholar 

  • Thomas G. 1982. Exchangeable cations. In Page A.L. (ed.) Methods of Soil Analysis, Part 2, 2d Ed. Agronomy 9: 191 – 195

    Google Scholar 

  • Ulrich B. 1980. Production and consumption of hydrogen ions in the ecosphere. In Hutchinson T.C., Havas M. (eds.) Effects of Acid Precipitation on Terrestrial Ecosystems. Plenum, New York, pp. 255 – 282

    Google Scholar 

  • Ulrich B. 1983. Soil acidity and its relations to acid deposition. In Ulrich B., Pankrath J. (eds.) Effects of Accumulation of Air Pollutants in Forest Ecosystems. D. Reidel, Boston, pp. 127 – 146

    Google Scholar 

  • Ulrich B., Mayer R., Khanana P.K. 1980. Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci. 130: 193 – 199

    Article  CAS  Google Scholar 

  • van Miegroet H., Cole D.W. 1985. Acidification sources in red alder and Douglas- fir soils—importance of nitrification. Soil Sci. Soc. Am. J. 49: 1274 – 1279

    Google Scholar 

  • van Breeman H., Burrough P.A., Velthorst E.J., Van Dobben H.F., deWit T., Ridder T.B., Reijnders H.F.R. 1982. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature, (London) 299: 548 – 550

    Article  Google Scholar 

  • Wiklander L., Andersson A. 1972. The replacing efficiency of hydrogen ion in relation to base saturation and pH. Geoderma 7: 159 – 165

    Article  CAS  Google Scholar 

  • Wright R.F., Norton S.A., Brakke D.F., Frogner T. 1988. Experimental verification of episodic acidification of freshwaters by sea salts. Nature (London) 334: 422 – 424

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Richter, D.D., Johnson, D.W., Dai, K.H. (1992). Cation Exchange and A1 Mobilization in Soils. In: Johnson, D.W., Lindberg, S.E. (eds) Atmospheric Deposition and Forest Nutrient Cycling. Ecological Studies, vol 91. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2806-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2806-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97632-7

  • Online ISBN: 978-1-4612-2806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics