The Processing of Auditory Signals in the CNS of Orthoptera

  • Brian Lewis

Abstract

Sound production in the Orthoptera is based on a mechanism known as stridulation where one cuticular surface is repeatedly applied to another. In the katydids (Tettigoniidae) and crickets (Gryllidae) the effective appendages are the forewings (elytra) whereas in the locusts and grasshoppers (Acrididae) sound is most commonly produced by the movement of both hind legs against the elytra. The periodicity of elytral or leg movement is rate multiplied by means of a series of teeth on one or other of the structures over which a hardened edge (plectrum) is passed during one stroke. Each tooth impact results in a pulse of energy that is passed to a radiating surface.

Keywords

Explosive Expense Neurol Arena Tral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley DR, Hoy RR (1972) Genetic control of the neuronal network generating cricket (Teleogryllus gryllus) song patterns. Anim Behav 20:478–492.PubMedCrossRefGoogle Scholar
  2. Boyan GS (1979) Directional responses to sound in the central nervous system of the cricket (Teleogryllus commodus (Orthoptera, Gryllidae), I. Ascending interneurones. J Comp Physiol 130:137–150.CrossRefGoogle Scholar
  3. Boyan GS (1980) Auditory neurons in the brain of the cricket Gryllus bimaculatus (De Geer). J Comp Phys-iol 140:81–93.CrossRefGoogle Scholar
  4. Boyan G (1981) Two-tone suppression of an auditory neuron in the brain of the cricket: proposed role in phonotactic behaviour. J Comp Physiol 144:171–126.CrossRefGoogle Scholar
  5. Boyan GS (1985) Auditory input to the flight system of the locust. J Comp Physiol 156:79–91.CrossRefGoogle Scholar
  6. Boyan GS, Williams JLD (1981) Descending interneurons in the brain of the cricket. Naturwiss 67:486.CrossRefGoogle Scholar
  7. Boyd P, Kühne, Silver S, Lewis B (1984) Two-tone suppression and song coding by ascending neurons in the cricket Gryllus campestris L. J Comp Physiol 154: 423–430.CrossRefGoogle Scholar
  8. Burk T (1982) Male aggression and female choice in a field cricket Teleogryllus oceanicus: the importance of courtship song. In: Gwynne DT, Morris GK (eds) Orthopteran Mating Systems: Sexual Competition in a Diverse Group of Insects. Boulder, Colorado: West-view Press, pp. 97–119.Google Scholar
  9. Cassaday GB, Hoy RR (1977) Auditory interneurons in the cricket Teleogryllus oceanicus: Physiological and anatomical properties. J Comp Physiol 121:1–13.CrossRefGoogle Scholar
  10. Čokl A, Kalmring K, Wittig H (1977) The responses of auditory ventral cord neurons of Locusta migratoria to vibration stimuli. J Comp Physiol 120:161–172.CrossRefGoogle Scholar
  11. Crankshaw OS (1979) Female choice in relation to calling and courtship songs in Acheta domesticus. Anim Behav 24:1274–1275.CrossRefGoogle Scholar
  12. Dolen Pv (1981) Üntersuchüngen zürn Vibrationsinn der Feldgrille. PhD Thesis, Köln.Google Scholar
  13. Gray EG (1960) The fine structure of the insect ear. Phil Trans Roy Soc B 243:75–94.CrossRefGoogle Scholar
  14. Harrison L, Horseman G, Lewis B (1988) The coding of the courtship song by an identified auditory neuron in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol 163:215–225.CrossRefGoogle Scholar
  15. Hedwig B, Eisner N (1985) Sound production and sound detection in a stridulating acridid grasshopper (Omocestus viridulus). In: Kalmring K, Eisner N (eds) Acoustic and Vibrational Communication in Insects. Berlin and Hamburg: Paul Parey, pp. 61–72.Google Scholar
  16. Heitler WJ, Burrows M (1977) The locust Jump: II. Neural circuits of the motor programme. J Exp Biol 66:221–241.Google Scholar
  17. Helversen Dv, Helversen Ov (1975) Verhaltensgentische Üntersuchüngen am aküstischen Kommünications-system der Feldheuschrecken (Orthoptera: Acrididae) I, II. J Comp Physiol 104:273–323.CrossRefGoogle Scholar
  18. Hoy RR, Hahn J, Paul RC (1977) Hybrid cricket auditory behaviour: evidence for genetic coupling in animal communication. Science: 195:82–84.PubMedCrossRefGoogle Scholar
  19. Hüber F (1983) Neural correllates of orthopteran and cicada phonotaxis. In: Hüber F, Markl H (eds) Neuroethology and Behavioural Physiology. Berlin and Heidelberg: Springer-Verlag, pp. 108–131.Google Scholar
  20. Hutchings M, Lewis B (1981) Response properties of primary auditory fibres in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol 143: 129–134.CrossRefGoogle Scholar
  21. Hutchings M, Lewis B (1983) Insect Sound and vibration receptors. In: Lewis B (ed) Bioacoustics. A Comparative Approach. London: Academic Press, pp. 181–206. Google Scholar
  22. Hutchings M, Lewis B (1984) The role of two-tone suppression in song coding by ventral cord neurons in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol 154:103–112.CrossRefGoogle Scholar
  23. Kalmring K, Lewis B, Eichendorf A (1978) The physiological characteristics of the primary sensory neurons of the complex tibial organ of Decticus verrucivorus L. (Orthoptera, Tettigoniidae). J Comp Physiol 127:109–121.CrossRefGoogle Scholar
  24. Kalmring K, Rehbein, H-G, Kühne R (1979) An auditory giant neuron in the ventral cord of Decticus verrucivorus (Tettigoniidae). J Comp Physiol 123:225–234.CrossRefGoogle Scholar
  25. Kalmring K, Kühne R, Lewis B (1983) The acoustic behaviour of the katydid Tettigonia cantans. III. Responses of ventral cord neurons. Behav Proc 8:213–228.Google Scholar
  26. Kalmring K, Kaiser WOC, Kühne R, (1985) Co-processing of vibratory and auditory information in the CNS of different tettigoniids and locusts. In: Kalmring K, Eisner N (eds) Acoustic and Vibrational Communication in Insects. Berlin and Hamburg: Paul Parey, pp. 193–202.Google Scholar
  27. Kühne R, Silver S, Lewis B (1984) Processing of vibratory and acoustic signals by ventral cord neurons in the cricket Gryllus campestris. J Insect Physiol 30:575–585.CrossRefGoogle Scholar
  28. Kühne R, Silver S, Lewis B (1985) Processing of vibratory signals in the central nervous system of the cricket. In: Kalmring K, Eisner N (eds) Acoustic and Vibrational Communication in Insects. Berlin and Hamburg: Paul Parey, pp. 183–192.Google Scholar
  29. Latimer W, Lewis B (1986) Song harmonic content as a parameter determining acoustic orientation behaviour in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol 158:583–591.CrossRefGoogle Scholar
  30. Latimer W, Schatral A (1983) The acoustic behaviour of the katydid Tettigonia cantans. I. Behavioural responses to sound and vibration. Behav Proc 8:113–124.Google Scholar
  31. Lewis B (1983) Directional cues for auditory localisation. In: Lewis B (ed) Bioacoustics. A Comparative Approach. London: Academic Press, pp. 233–260. Google Scholar
  32. Loher W, Rence B (1978) The mating behaviour of Teleogryllus commodus (Walker) and its central and peripheral control. Z Tierpsychol 46:225–259.CrossRefGoogle Scholar
  33. Michelsen A (1971) The physiology of the locust ear. Z vergl Physiol 71:49–128.CrossRefGoogle Scholar
  34. Michelsen A, Larsen ON (1984) Hearing and Sound. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford, New York: Pergamon Press, pp. 496–556.Google Scholar
  35. Moiseff A, Hoy R (1983) Sensitivity to ultrasound in an identified auditory interneuron in the cricket: a possible neural link to phonotactic behaviour. J Comp Physiol 152:155–167.CrossRefGoogle Scholar
  36. Moiseff A, Pollack GS, Hoy R (1978). Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sei USA 75:4052–4056.CrossRefGoogle Scholar
  37. Nocke H (1972) Physiological aspects of sound communication in crickets (Gryllus campestrisL.) J Comp Physiol 80:141–162. CrossRefGoogle Scholar
  38. Nolen TG, Hoy RR (1986a) Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviours. J Comp Physiol 159:423–439.Google Scholar
  39. Nolen TG, Hoy RR (1986b) Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behaviour by the calling song. J Comp Physiol 159: 441–456.Google Scholar
  40. Nolen TG, Hoy RR (1987) Postsynaptic inhibition mediates high frequency selectivity in the cricket Teleogryllus oceanicus; implications for flight phonotaxis behaviour. J Neurosci 7:2081–2096.PubMedGoogle Scholar
  41. Oldfield BP (1982) Tonotopic organisation of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 147:461–469.CrossRefGoogle Scholar
  42. Oldfield BP (1983) Central projections of primary auditory fibres in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 151:389–395.CrossRefGoogle Scholar
  43. Oldfield BP, Kleindienst H-Ü, Hüber F (1986) Physiology and tonotopic organisation of auditory receptors in the cricket Gryllus bimaculatus De Geer. J Comp Physiol 159:457–464.CrossRefGoogle Scholar
  44. Otte D, Cade W (1976) On the role of olfaction in sexual and interspecies recognition in crickets (Acheta and Gryllus). Anim Behav 24:1–6.CrossRefGoogle Scholar
  45. Pearson KG, Heitler WJ, Steeves JD (1980) Triggering of the locust jump by multimodal inhibitory interneurons. J Neurophysiol 43:257–278.PubMedGoogle Scholar
  46. Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429–432.PubMedCrossRefGoogle Scholar
  47. Pollack GS, Hüber F, Weber T (1984) Frequency and temporal pattern dependent phonotaxis of crickets Teleogryllus oceanicus during tethered flight and com-pensated walking. J Comp Physiol 154:13–26.CrossRefGoogle Scholar
  48. Popov AV, Markovich AM (1982) Auditory interneurons in the prothoracic ganglion of the cricket Gryllus bimaculatus. II. A high frequency ascending neuron (HF1AN). J Comp Physiol 146:351–359.CrossRefGoogle Scholar
  49. Popov AV, Shuvalov VF (1977) Phonotactic behaviour of crickets. J Comp Physiol 119:119–126.CrossRefGoogle Scholar
  50. Popov AV, Shuvalov VF, Svetlogorskaya ID, Markovich AM (1974) Acoustic behaviour and auditory system in insects. In: Schwartzkopf J (ed) Mechanoreception. Rhein-Westf Acad Wiss Abh 53:281–306.Google Scholar
  51. Rehbein HG (1976) Auditory neurons in the ventral cord of the locust; morphological and functional properties. J Comp Physiol 110:233–250.CrossRefGoogle Scholar
  52. Rehbein HG (1973) Experimenteile-anatomische Ünter-suchüngen über den Verlauf der Tympanalnerven-fasern im Baüchmark von Feldheuschrecken, Laub-heuschrecken ünd Grillen. Verh Dtsch Zool Ges 66: 184–189.Google Scholar
  53. Römer H (1983) Tonotopic organisation of the auditory neuropile in the katydid, Tettigonia virridissima. Nature 306:60–62.CrossRefGoogle Scholar
  54. Römer H, Dronse R (1982) Synaptic mechanisms of monaural and binaural processing in the locust. J Insect Physiol 28:365–370.CrossRefGoogle Scholar
  55. Römer H, Marquart V, Hardt M (1988) Organisation of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215. Rose G, Capranica RR (1984) Processing amplitude modulated sounds by the auditory midbrain of two species of toads: matched temporal filters. J Comp Physiol 154:211–219.CrossRefGoogle Scholar
  56. Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol 155:171–185.CrossRefGoogle Scholar
  57. Selverston AI, Kleindienst H, Hüber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292.PubMedGoogle Scholar
  58. Silver SO, Kühne R, Lewis DB (1984) Two-tone interactions and song coding in identified ventral cord neurons in the cricket. Acoustics Letters 7:135–140.Google Scholar
  59. Skovmand O, Pedersen SB (1978) Tooth impact rate in the song of a short-horned grasshopper: a parameter carrying specific behavioural information. J Comp Physiol 124:27–36.CrossRefGoogle Scholar
  60. Smart J (1963) Explosive evolution and the phylogeny of insects. Proc Linn Soc Lond 1974:125–126.CrossRefGoogle Scholar
  61. Steidl O, Bickmeyer Ü, Kalmring K (1990) Tooth impact rate alteration in the song of males of Ephippiger ephippiger Fiebig (Orthoptera, Tettigoniidae) and its consequences for phonotactic behaviour of females. Bioacoustics (In press).Google Scholar
  62. Stephen RO, Bennet-Clark HC (1982) The anatomical and mechanical basis of stridulation and frequency analysis in the locust ear. J Exp Biol 99:279–414.Google Scholar
  63. Thorson J, Weber T, Hüber F (1982) Auditory behaviour of the cricket. II. Simplicity of calling song recognition in Gryllus and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol 146: 361–378.Google Scholar
  64. Walker TJ, Dew D (1972) Wing movements of calling katydids: fiddling finesse. Science 178:174–176.PubMedCrossRefGoogle Scholar
  65. Weber T, Thorson J, Hüber F (1981) Auditory behaviour of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J Comp Physiol 141:215–232.Google Scholar
  66. Wiese K (1981a) Influence of vibration on cricket hearing: interaction of low frequency vibration and acoustic stimuli in the Omega neuron (Gryllus bimaculatus). J Comp Physiol 143:135–142.CrossRefGoogle Scholar
  67. Wiese K (1981b) Aküstische, vibratorische ünd efferente Eingange am Omega-Neuron der Grillen-hörbahn. Verh Dtsch Zool Ges 168. Google Scholar
  68. Wohlers DW, Hüber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., Gryllus bimaculatus De Geer). J Comp Physiol 127:11–28.CrossRefGoogle Scholar
  69. Wohlers DW, Hüber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket Gryllus campestris L. J Comp Physiol 146:161–173.CrossRefGoogle Scholar
  70. Wohlers DW, Hüber F (1985) Topographic organisation of the auditory pathway within the prothoracic ganglion of the cricket Gryllus campestris L. Cell Tissue Res 239:555–565.CrossRefGoogle Scholar
  71. Zhantiev RD, Kursunouskaya OS (1977) Reaction to sound of descending neurons in cervical connections of the cricket Gryllus bimaculatus DeGeer (Orthoptera, Gryllidae) (in Russian). Ent. Obozr. 54:248–257.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Brian Lewis

There are no affiliations available

Personalised recommendations