Skip to main content

Hearing and Sound Communication in Small Animals: Evolutionary Adaptations to the Laws of Physics

  • Chapter
The Evolutionary Biology of Hearing

Abstract

A sense of hearing (including the hearing organs and central processing of auditory information) obviously evolved many times and independently in various groups of insects and vertebrates. Many of the features of the auditory systems reflect the evolutionary prehistory of the animals and thus follow their systematic positions. However, some features are consequences of the physical nature of sound waves, and we therefore find functionally analogous mechanisms in rather unrelated animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Autrum H (1940) Das Richtungshören von Locusta und Versuch einer Hörtheorie für Tympanalorgane der Locustidentyp. Z Vergl Physiol 28:326–352.

    Article  Google Scholar 

  • Bennet-Clark HC (1970) The mechanism and efficiency of sound production in mole crickets. J Exp Biol 52: 619–652.

    Google Scholar 

  • Bennet-Clark HC (1971) Acoustics of insect song. Nature 234:255–259.

    Article  Google Scholar 

  • Beranek LL (1954) Acoustics. New York: McGraw-Hill.

    Google Scholar 

  • Brownell P, Farley RD (1979) Orientations to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanisms of target localization. J Comp Physiol 131:31–38.

    Article  Google Scholar 

  • Eisner N, Popov AV (1978) Neuroethology of acoustic communication. Adv Insect Physiol 13:229–355.

    Article  Google Scholar 

  • Forrest TG (1982) Acoustic communication and baffling behaviors of crickets. Fl Entomol 65:33–44.

    Article  Google Scholar 

  • Heinzel H-G, Dambach M (1987) Travelling air vortex rings as potential communicative signals in a cricket. J Comp Physiol 160:79–88.

    Article  Google Scholar 

  • Heiversen D von, Helversen O von (1983) Species recognition and acoustic localization in acridid grasshoppers: a behavioral approach. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin Heidelberg: Springer-Verlag, pp. 95–107.

    Google Scholar 

  • Hergenröder R, Barth FG (1983) Vibratory signals and spider behavior: How do the sensory inputs from the eight legs interact in orientation? J Comp Physiol 152: 361–371.

    Article  Google Scholar 

  • Hill KG, Lewis B, Hutchings ME, Coles RB (1980) Directional hearing in the Japanese quail. I. Acoustic properties of the auditory system. J Exp Biol 86:135–151.

    Google Scholar 

  • Larsen ON, Michelsen A (1978) Biophysics of the ensiferan ear. III. The cricket ear as a four input system. J Comp Physiol 123:217–227.

    Article  Google Scholar 

  • Larsen ON, Kleindienst H-U, Michelsen A (1989) Biophysical aspects of sound reception. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, pp. 364–390.

    Google Scholar 

  • Lewis B (1983) Directional cues for auditory localiza tion. In: Lewis B (ed) Bioacoustics, a comparative approach. London: Academic Press, pp. 233–257.

    Google Scholar 

  • Markl H (1968) Die Verständigung durch Stridulations-signale bei Blattschneiderameisen. II. Erzeugung und Eigenschaften der Signale. Z Vergl Physiol 60:103–150.

    Article  Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin Heidelberg: Springer-Verlag, pp. 332–353.

    Google Scholar 

  • Markl H, Fuchs S (1972) Klopfsignale mit Alarmfunk tion bei Rossameisen (Camponotus, Formicidae, Hymenoptera). Z Vergl Physiol 76:204–255.

    Article  Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear. Z Vergl Physiol 71:49–128.

    Article  Google Scholar 

  • Michelsen A (1973) The mechanics of the locust ear: an invertebrate frequency analyzer. In: Møller Å (ed) Mechanisms in hearing. London: Academic Press, pp. 911–934.

    Google Scholar 

  • Michelsen A (1978) Sound reception in different environments. In: Ali MA (ed) Sensory ecology, review and perspectives. New York: Plenum Press, pp. 345–373.

    Google Scholar 

  • Michelsen A (1983) Biophysical basis of sound communication. In: Lewis B (ed) Bioacoustics, a comparative approach. London: Academic Press, pp. 3–38.

    Google Scholar 

  • Michelsen A, Nocke H (1974) Biophysical aspects of sound communication in insects. Adv Insect Physiol 10:247–296.

    Article  Google Scholar 

  • Michelsen A, Larsen ON (1978) Biophysics of the ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203.

    Article  Google Scholar 

  • Michelsen A, Larsen ON (1983) Strategies for acoustic communication in complex environments. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin Heidelberg: Springer-Verlag, pp. 323–331.

    Google Scholar 

  • Michelsen A, Larsen ON (1985) Hearing and sound. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Oxford: Pergamon Press, Vol. 6, pp. 495–556.

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281.

    Article  Google Scholar 

  • Michelsen A, Jørgensen M, Christensen-Dalsgaard J, Capranica RR (1986a) Directional hearing of awake unrestrained treefrogs. Naturwissenschaften 73:682.

    Article  PubMed  CAS  Google Scholar 

  • Michelsen A, Kirchner WH, Andersen BB, Lindauer M (1986b) The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. J Comp Physiol 158:605–611.

    Article  Google Scholar 

  • Michelsen A, Towne WF, Kirchner WH, Kryger P (1987) The acoustic near field of a dancing honeybee. J Comp Physiol 161:633–643.

    Article  Google Scholar 

  • Michelsen A, Andersen BB, Kirchner WH, Lindauer M (1989a) Honeybees can be recruited by a mechanical model of a dancing bee. Naturwissenschaften 76:277–280.

    Article  Google Scholar 

  • Michelsen A, Hedwig B, Eisner N (1990) Biophysical and neurophysiological effects of respiration on sound reception in the migratory locust, Locusta migratoria. In: Gribakin FG, Wiese K, Popov AV (eds.) Sensory systems and communication in Arthropods. Basel: Birkhäuser Verlag, pp. 199–203.

    Google Scholar 

  • Michelsen A, Heller K-G, Stumpner A (1991) Biophysics of directional hearing in bush crickets (in preparation).

    Google Scholar 

  • Michel K (1974) Das Tympanalorgan von Gryllus bimaculatus Degeer (Saltatoria, Gryllidae). Z Morphol Tiere 77:285–315.

    Article  Google Scholar 

  • Møhl B, Miller LA (1976) Ultrasonic clicks produced by the peacock butterfly: A possible bat-repellent mechanism. J Exp Biol 64:639–644.

    Google Scholar 

  • Mörchen A, Rheinlaender J, Schwartzkopff J (1978) Latency shift in insect auditory nerve fibers. Naturwissenschaften 65:656.

    Article  Google Scholar 

  • Nocke H (1971) Biophysik der Schallerzeugung durch die Vorderflügel der Grillen. Z Vergl Physiol 74:272–314.

    Article  Google Scholar 

  • Payne R, Roeder KD, Wallman J (1966) Directional sensitivity of the ears of noctuid moths. J Exp Biol 44:17–31.

    PubMed  CAS  Google Scholar 

  • Prager J (1976) Das mesothorakale Tympanalorgan von Corixa punctata I11. (Heteroptera, Corixidae). J Comp Physiol 110:33–50.

    Google Scholar 

  • Prager J, Larsen ON (1981) Asymmetrical hearing in the water bug Corixa punctata observed with laser vibrometry. Naturwissenschaften 68:579.

    Article  Google Scholar 

  • Prager J, Streng R (1982) The resonance properties of the physical gill of Corixa punctata and their significance in sound reception. J Comp Physiol 148:323–335.

    Article  Google Scholar 

  • Prestwich KN, Walker TJ (1981) Energetics of singing in crickets: effect of temperature in three trilling species (Orthoptera Gryllidae). J Comp Physiol 143:199–212.

    Google Scholar 

  • Prozesky-Schulze L, Prozesky OPM, Anderson F, van der Merwe GJ (1975) Use of a selfmade sound baffle by a tree cricket. Nature 255:142–143.

    Article  Google Scholar 

  • Roth LM (1948) A study of mosquito behavior. An experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). Am Mdld Natural 40: 265–352.

    Article  Google Scholar 

  • Skovmand O, Pedersen SB (1978) Tooth impact rate in the song of a shorthorned grasshopper: a parameter carrying specific behavioral information. J Comp Physiol 124:27–36.

    Article  Google Scholar 

  • Spangler HG (1987) Ultrasonic communication in Corcyra cephalonica (Stainton) (Lepidoptera Pyralidae). J Stored Products Res 23:203–211.

    Article  Google Scholar 

  • Tautz J (1979) Reception of particle oscillation in a medium-an unorthodox sensory capacity. Naturwissenschaften 66:452–461.

    Article  Google Scholar 

  • Tischner H (1953) Über den Gehöhrsinn von Stechmücken. Acoustica 3:335–343.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Michelsen, A. (1992). Hearing and Sound Communication in Small Animals: Evolutionary Adaptations to the Laws of Physics. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics