Skip to main content

Functional Consequences of Morphological Trends in the Evolution of Lizard Hearing Organs

  • Chapter

Abstract

The hearing organ of modern terrestrial amniotic vertebrates shows a fascinating diversity of structure. The morphological patterns of the lizard basilar papilla show greater differences between families and even within families than those in any other vertebrate groups (Chapter 23 by Miller). This, of course, raises the question of the functional consequences of morphological variations and of the clues they might provide to the selection pressures that have led to the diversity seen today. In this chapter, we will try to outline the differences and similarities in the physiology of the diverse hearing organs studied and infer correlations between structure and function which might be related to the selection pressures underlying the evolution of such great diversity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Art JJ, Fettiplace R (1984) Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans. J Physiol 356:507–523.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R (1987) Variation in membrane properties in hair cells isolated from the turtle cochlea. J Physiol 385:207–242.

    PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyper-polarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–550.

    PubMed  CAS  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1985) Efferent modulation of hair cell tuning in the cochlea of the turtle. J Physiol 360:397–421.

    PubMed  CAS  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R (1986) Electrical resonance and membrane currents in turtle cochlear hair cells. Hearing Res 22:31–36.

    Article  CAS  Google Scholar 

  • Berger K (1924) Experimentelle Studien über Schallper-zeption bei Reptilien. Z vergl Physiol 1:517–540.

    Article  Google Scholar 

  • Campbell HW (1969) The effects of temperature on the auditory sensitivity of lizards. Physiol Zool 42: 183–210.

    Google Scholar 

  • Carroll RL (1987) Vertebrate Palaeontology and Evolution. New York: Freeman.

    Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol 306:79–125.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Manley GA (1981) Auditory nerve fibre activity in the tokay gecko: II: Temperature effect on tuning. J Comp Physiol A 142:219–226.

    Article  Google Scholar 

  • Eatock RA, Manley GA, Pawson L (1981) Auditory nerve fibre activity in the tokay gecko: I: Implications for cochlear processing. J Comp Physiol A 142: 203–218.

    Article  Google Scholar 

  • Estes R, de Queiroz K, Gauthier J (1988) Phylogenetic relationships within squamata. In: Estes R, Pregill G (eds) Phylogenetic relationships of the lizard families. Palo Alto: Stanford Univ Press.

    Google Scholar 

  • Freeman DM, Weiss TF (1988) The role of fluid inertia in mechanical stimulation of hair cells. Hearing Res 35:201–208.

    Article  CAS  Google Scholar 

  • Frischkopf LS, DeRosier DJ (1983) Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea. Hearing Res 12:393–404.

    Article  Google Scholar 

  • Gleich O (1989) Auditory primary afferents in the starling: Correlation of function and morphology. Hearing Res 37:255–268.

    Article  CAS  Google Scholar 

  • Holton T (1980) Relations between frequency selectivity and two-tone rate suppression in lizard cochlear-nerve fibres. Hearing Res 2:21:38.

    Google Scholar 

  • Holton T, Weiss TF (1983a) Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones. J Physiol 345:205–240.

    PubMed  CAS  Google Scholar 

  • Holton T, Weiss TF (1983b) Frequency selectivity of hair cells and nerve fibres in the alligator lizard cochlea. J Physiol 345:241–260.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Holton T (1986) Micromechanical properties of the alligator lizard’s basilar papilla contribute to frequency tuning. Hearing Res 22:93.

    Article  Google Scholar 

  • Konishi M, Sullivan WE, Takahashi T (1985) The owl’s cochlear nuclei process different sound localization cues. J Acoust Soc Amer 78:360–364.

    Article  CAS  Google Scholar 

  • Köppl C (1988) Morphology of the basilar papilla of the bobtail lizard Tiliqua rugosa. Hearing Res. 35:209–228.

    Article  Google Scholar 

  • Köppl C (1989) Struktur und Funktion des Hörorgans der Echsen: Ein Vergleich von Lacertidae und Scincidae. Doctoral dissertation in zoology, Technical University of Munich.

    Google Scholar 

  • Köppl C, Manley GA (1990a) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: II. Tonotopic organization and innervation pattern of the basilar papilla. J Comp Physiol A 167:101–112.

    Article  Google Scholar 

  • Köppl C, Manley GA (1990b) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: III. Patterns of spontaneous and tone-evoked nerve-fibre activity. J Comp Physiol A 167:113–127.

    Article  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. Boca Raton: CRC Press.

    Google Scholar 

  • Manley GA (1976) auditory responses from the medulla of the monitor lizard Varanus bengalensis. Brain Res 102:329–334.

    Article  Google Scholar 

  • Manley GA (1977) Response patterns and peripheral origin of auditory nerve fibres in the monitor lizard, Varanus bengalensis. J Comp Physiol A 118:249–260.

    Article  Google Scholar 

  • Manley GA (1979) Preferred intervals in the spontaneous activity of primary auditory neurones. Naturwiss 66:582.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of the reptiles. Prog Sens Physiol 2:49–134.

    Google Scholar 

  • Manley GA (1990) Peripheral hearing mechanisms in reptiles and birds. Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • Manley GA, Brix J, Kaiser A (1987) Developmental stability of the tonotopic organization of the chick’s basilar papilla. Science 237:655–656.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Schulze M, Oeckinghaus H (1987) Otoa-coustic emissions in a song bird. Hearing Res 26: 257–266.

    Article  CAS  Google Scholar 

  • Manley GA, Yates G, Köppl C (1988) Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua. Hearing Res 33:181–190.

    Article  CAS  Google Scholar 

  • Manley GA, Brix J, Gleich O, Kaiser A, Köppl C, Yates G (1988) New aspects of comparative peripheral auditory physiology. In: Syka J, RB Masterton (eds) Auditory Pathway— Structure and Function. London, NY: Plenum Press, pp. 3–12.

    Google Scholar 

  • Manley GA, Köppl C, Yates GK (1989) Micromechanical basis of high-frequency tuning in the bobtail lizard. In: Wilson JP, Kemp DT (eds) Cochlear mechanism. New York: Plenum Press.

    Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: I. Frequency tuning of auditory-nerve fibres. J Comp Physiol A 167:89–99.

    Article  Google Scholar 

  • Manley GA, Yates GK, Köppl C, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: IV. Phase-locking of auditory-nerve fibres. J Comp Physiol A 167:129–138.

    Article  Google Scholar 

  • Marcellini D (1977) Acoustic and visual display behavior of gekkonid lizards. Amer Zool 17:251–260.

    Google Scholar 

  • Miller MR (1973) A scanning electron microscope study of the papilla basilaris of Gekko gecko. Z Zellforsch 136:307–328.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1974) Scanning electron microscope studies of some skink Papillae basilares. Cell Tiss Res 150: 125–141.

    Article  CAS  Google Scholar 

  • Miller MR (1978) Further scanning electron microscope studies of lizard auditory papillae. J Morphol 156: 381–418.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. New York, Heidelberg, Berlin: Springer-Verlag, pp. 169–204.

    Google Scholar 

  • Miller MR (1985) Quantitative studies of auditory hair cells and nerves in lizards. J Comp Neurol 232:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628.

    Article  PubMed  CAS  Google Scholar 

  • Mulroy MJ (1974) Cochlear anatomy of the alligator liz-ard. Brain Beh Evol 10:69–87.

    Article  CAS  Google Scholar 

  • Mulroy MJ, Williams RS (1987) Auditory stereocilia in the alligator lizard. Hearing Res 25:11–21.

    Article  CAS  Google Scholar 

  • Oertel D (1985) Use of brain slices in the study of the auditory system: spacial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. J Acoust Soc Amer 78:328–333.

    Article  CAS  Google Scholar 

  • Patterson WC (1966) Hearing in the turtle. J Aud Res 6:453–464.

    Google Scholar 

  • Patuzzi RB, Yates GK (1987) The low-frequency response of inner hair cells in the guinea-pig cochlea: implications for fluid coupling and resonance of the stereocilia. Hearing Res 30:83–98.

    Article  CAS  Google Scholar 

  • Peake WT, Ling A (1980) Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity. J Acoust Soc Amer 67:1736–1745.

    Article  CAS  Google Scholar 

  • Rose C, Weiss TF (1988) Frequency dependence of synchronization of cochlear nerve fibres in the alligator lizard: Evidence for a cochlear origin of timing and non-timing neural pathways. Hearing Res 33:151–166.

    Article  CAS  Google Scholar 

  • Sakaluk SK, Belwood JJ (1984) Gecko phonotaxis to cricket calling song: a case of satellite predation. Animal Behaviour 32:659–662.

    Article  Google Scholar 

  • Schermuly L, Klinke R (1985) Change of characteristic frequencies of pigeon primary auditory afferents with temperature. J Comp Physiol A 156:209–211.

    Article  Google Scholar 

  • Smolders JWT, Klinke R (1984) Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus (L.). J Comp Physiol 155:19–30.

    Article  Google Scholar 

  • Sneary MG (1988a) Auditory receptor of the red-eared turtle: I. General ultrastructure. J Comp Neurol 276: 573–587.

    Article  PubMed  CAS  Google Scholar 

  • Sneary MG (1988b) auditory receptor of the red-eared turtle: II. Afferent and efferent synapses and innervation pattern. J Comp Neurol 276:588–606.

    Article  PubMed  CAS  Google Scholar 

  • Turner RG (1980) Physiology and bioacoustics in reptiles. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. New York, Heidelberg, Berlin: Springer-Verlag, pp. 205–237.

    Google Scholar 

  • Turner RG (1987) Neural tuning in the granite spiny liz-ard. Hearing Res 26:287–299.

    Article  CAS  Google Scholar 

  • Turner RG, Muraski AA, Nielsen DW (1981) Cilium length: Influence on neural tonotopic organization. Science 213:1519–1521.

    Article  PubMed  CAS  Google Scholar 

  • Weiss TF, Leong R (1985) A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage. Hearing Res 20:157–174.

    Article  CAS  Google Scholar 

  • Weiss TF, Mulroy MJ, Turner RG, Pike CL (1976) Tuning of single fibres in the cochlear nerve of the alligator lizard: relation to receptor morphology. Brain Res 115:71–90.

    Article  PubMed  CAS  Google Scholar 

  • Werner YL, Frankenberg E, Adar O (1978) Further observations on the distinctive vocal repertoire of Ptyodactylus hasselquistii CF. hasselquistii (Reptilia: Gekkonidae). Israel J Zool 27:176–188.

    Google Scholar 

  • Wever EG (1967) The tectorial membrane of the lizard ear: types of structure. J Morphol 122: 307–320.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG (1978) The Reptile Ear. Princeton NJ Princeton Univ Press.

    Google Scholar 

  • Wever EG, Vernon JA, Crowley DE, Peterson, EA (1965) Electrical output of lizard ear: relation to hair-cell population. Science 150:1172–1174.

    Article  PubMed  CAS  Google Scholar 

  • Zurek PM (1985) Acoustic emissions from the ear: A summary of results from humans and animals. J Acoust Soc Am 78:340–344.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Köppl, C., Manley, G.A. (1992). Functional Consequences of Morphological Trends in the Evolution of Lizard Hearing Organs. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics