Advertisement

The Water-to-Land Transition: Evolution of the Tetrapod Basilar Papilla, Middle Ear, and Auditory Nuclei

  • Bernd Fritzsch

Abstract

The evolution of the auditory system of tetrapods has been the topic of numerous investigations on the middle ear (e.g., Reichert 1837; Gaupp 1898, 1913; de Burlet 1934; Thomson 1966; Henson 1974; Lombard and Bolt 1988), the inner ear (e.g., Retzius 1881, 1884; de Burlet 1934; Werner 1960; Baird 1974; Lewis, Leverenz, and Bialek 1985), and the auditory pathways in the central nervous system (e.g., Larsell 1934; Ariens-Kappers, Huber, and Crosby 1936; Northcutt 1980). The consensus reached by many of these studies was that the water-to-land transition apparently coincided with the coevolution of a tympanic middle ear, a basilar papilla, and a periotic labyrinth in the inner ear, as well as neural pathways devoted to the processing of airborn sound in tetrapods (Fig. 18.1).

Keywords

Lateral Line Oval Window Otic Capsule Basilar Papilla Auditory Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariens-Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. New York: Hafner Publishing.Google Scholar
  2. Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol. V/l. Berlin: Springer, pp. 159–212. Google Scholar
  3. Blaxter JHS, Denton EJ, Gray JAB (1981) Acoustico-lateralis system in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer Verlag, pp. 39–59.Google Scholar
  4. Bjerring HC (1985) Facts and thoughts on piscine phylogeny. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary Biology of Primitive Fishes. New York: Plenum Press, pp. 31–57.Google Scholar
  5. Campbell KSW, Barwick RE (1986) Paleozoic lung-fishes-a review. J Morphol Suppl 1:93–131.CrossRefGoogle Scholar
  6. Carroll RL (1988) Vertebrate Palaeontology and Evolution. New York: Freeman and Co.Google Scholar
  7. Clack JA (1989) Discovery of the earliest-known tetrapod stapes. Nature 342:425–427.PubMedCrossRefGoogle Scholar
  8. Corwin JT (1981) Audition in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer Verlag, pp. 81–105.Google Scholar
  9. de Burlet HM (1934) Vergleichende Anatomie des stato-akustischen Organs, a) Die innere Ohrsphäre; b) Die mittlere Ohrsphäre. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der Vergleichenden Anatomie der Wirbeltiere, Vol. 2. Berlin: Urban and Schwarzenberg, pp. 1293–1432.Google Scholar
  10. Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 561–586.Google Scholar
  11. Forey PL (1986) Relationships of lungfishes, J Morphol Suppl 1:75–91.CrossRefGoogle Scholar
  12. Forey PL (1988) Golden jubilee for the coelacanth Latimeria chalumnae. Nature 336:727–732.CrossRefGoogle Scholar
  13. Fricke H, Reinicke O, Hofer H, Nachtigall W (1987) Locomotion of the coelacanth Latimeria chalumnae in its natural environment. Nature 329:331–333.CrossRefGoogle Scholar
  14. Fritzsch B (1987) The inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature 327:153–154.CrossRefGoogle Scholar
  15. Fritzsch B (1988) Phylogenetic and ontogenetic origin of the dorsolateral auditory nucleus of anurans. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 561–586.Google Scholar
  16. Fritzsch B, Wake MH (1988) The inner ear of gymno-phione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphology 108:210–217.CrossRefGoogle Scholar
  17. Fritzsch B (1989) Diversity and regression in the amphibian lateral line system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer Verlag, pp. 99–115.CrossRefGoogle Scholar
  18. Fritzsch B (1990a) The evolution of metamorphosis in amphibians. J Neurobiol 21:1011–1021.PubMedCrossRefGoogle Scholar
  19. Fritzsch B (1990b) Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Develop Brain Res 51:113–122.CrossRefGoogle Scholar
  20. Fritzsch B, Niemann U, Bleckmann H (1990) A discrete projection of the sacculus and lagena to a distinct brain stem nucleus in a catfish. Neurosci Lett 111:7–11.PubMedCrossRefGoogle Scholar
  21. Gaupp E (1898) Ontogenese und Phylogenese des schalleitenden Apparates bei den Wirbeltieren. Erg Anat Entwicklungsgesch 8:990–1149.Google Scholar
  22. Gaupp E (1913) Die Reichertsche Theorie (Hammer-, Ambos und Kieferfrage). Arch Anat Anat Abt Suppl 1–416. Google Scholar
  23. Goodrich ES (1930) Studies on the structure and development of vertebrates. London: MacMillan.Google Scholar
  24. Greenwood PH (1963) The swimbladder in African notopteridae (Pisces) and its bearing on the taxonomy of the family. Bull Br Mus Nat Hist (Zool) 11:377–412.Google Scholar
  25. Gutknecht D, Fritzsch B (1990) Lithium induces multiple ear vesicles in Xenopus laevis embryos. Naturwissenschaften 77:235–237.PubMedCrossRefGoogle Scholar
  26. Henson OW (1974) Comparative anatomy of the middle ear. In: Keidel WD, NeffWD (eds) Handbook of Sensory Physiology. V/l: Auditory System. Berlin: Springer, pp. 40–110. Google Scholar
  27. Hetherington TE (1988) Metamorphic changes in the middle ear. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 339–357.Google Scholar
  28. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.PubMedCrossRefGoogle Scholar
  29. Jacoby J, Rubinson K (1983) The acoustic and lateral line nuclei are distinct in the premetamorphic frog. Rana catesbeiana. J Comp Neurol 216:152–161.PubMedCrossRefGoogle Scholar
  30. Jarvik E (1980) Basic structure and evolution of vertebrates. Vol. 1. London: Academic Press.Google Scholar
  31. Jaslow AP, Hetherington TE, Lombard RE (1988) Structure and function of the amphibian middle ear. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 69–91.Google Scholar
  32. Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 84–130.Google Scholar
  33. Larsell O (1934) The differentiation of the peripheral and central acoustic apparatus in the frog. J Comp Neurol 60:473–527.CrossRefGoogle Scholar
  34. Larsell O (1967) The Comparative Anatomy and Histology of the Cerebellum from Myxinoids through Birds. Jansen J (ed) Minneapolis: University of Minnesota Press, pp. 163–178.Google Scholar
  35. Lewis ER, Leverenz EL, Bialek W (1985) The vertebrate inner ear. Boca Raton: CRC Press, pp. 256.Google Scholar
  36. Lewis ER, Lombard RE (1988) The amphibian inner ear. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 93–123.Google Scholar
  37. Liem KF (1989) Respiratory gas bladders in teleosts: Functional conservatism and morphological diversity. Amer Zool 29:333–352.Google Scholar
  38. Lombard RE (1977) Comparative morphology of the inner ear in salamanders (Caudata: Amphibia). Contrib Vert Evol 2:1–143.Google Scholar
  39. Lombard RE, Bolt JR (1979) Evolution of the tetrapod ear: an analysis and reinterpretation. Biol J Linn Soc 11:19–76.CrossRefGoogle Scholar
  40. Lombard RE (1980) The structure of the amphibian auditory periphery: A unique experiment in terrestrial hearing. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer Verlag, pp. 121–138.Google Scholar
  41. Lombard RE, Bolt JR (1988) Evolution of the stapes in paleozoic tetrapods. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 37–67.Google Scholar
  42. Luther A (1924) Entwicklungsmechanische Untersuchungen am Labyrinth einiger Anuren. Soc Sc Fenn Comment Biol 2:1–48.Google Scholar
  43. McCormick CA, Braford MR (1988) Central connections of the octavo-lateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animal. New York: Springer, pp. 750–767.Google Scholar
  44. Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae. Tome II. Paris: CNRS.Google Scholar
  45. Moller AR (1974) Function of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, V/l: Auditory System. Berlin: Springer, pp. 492–517.Google Scholar
  46. Noden DM (1987) Interactions between cephalic neural crest and mesodermal populations. In: Maderson PFA (ed) Developmental and Evolutionary Aspects of the Neural Crest. New York: Wiley, pp. 89–120.Google Scholar
  47. Northcutt RG (1980) Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer Verlag, pp. 79–118.Google Scholar
  48. Northcutt RG (1986a) Electroreception in nonteleost bony fishes. In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: Wiley and Sons, pp. 257–287.Google Scholar
  49. Northcutt RG (1986b) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol Suppl 1:277–297.CrossRefGoogle Scholar
  50. Popper AN, Rogers PH, Saidel WM, Cox M (1988) Role of the fish ear in sound processing. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 687–710.Google Scholar
  51. Reichert C (1847) Über die Visceralbögen der Wirbeltiere im allgemeinen und deren Metamorphose bei den Vögeln und Säugetieren. Arch Anat Physiol 120–222. Google Scholar
  52. Retzius G (1881) Das Gehörorgan der Wirbeltiere: I. Das Gehörorgan der Fische und Amphibien. Stockholm: Samson and Wallin, pp. 286.Google Scholar
  53. Retzius G (1884) Das Gehörorgan der Wirbeltiere: II. Das Gehörorgan der Amnioten. Stockholm: Samson und Wallin, pp. 345.Google Scholar
  54. Rogers PH, Cox M (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 131–149.Google Scholar
  55. Romer AS (1937) The braincase of the carboniferous crossopterygian Megalichthyes nitidus. Bull Mus Comp Zool 82:1–73.Google Scholar
  56. Sarasin P, Sarasin F (1892) Über das Gehörorgan der Caeciliiden. Anat Anz 7:812–815.Google Scholar
  57. Schultze H-P (1986) Dipnoans as sarcopterygians. J Morphol Suppl 1:39–74.CrossRefGoogle Scholar
  58. Thomson KS (1966) The evolution of the tetrapod middle ear in the rhipidistian-amphibian transition. Amer Zool 6:379–397.Google Scholar
  59. Toerien MJ (1963) Experimental studies on the origin of the cartilage of the auditory capsule and columella in Ambystoma. J Embryol Exp Morphol 11:459–473.PubMedGoogle Scholar
  60. van Bergeijk WA (1966) Evolution of the sense of hearing in vertebrates. Am Zool 6:371–377.PubMedGoogle Scholar
  61. van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.Google Scholar
  62. Van de Water TR, Noden DM, Maderson PFA (1986) Embryology of the ear: Outer, middle, and inner ear. In: Alberti PW, Ruben RJ (eds) Otological Medicine and Surgery. New York: Churchill-Livingstone.Google Scholar
  63. Wahnschaffe U, Bartsch U, Fritzsch B (1987) Metamorphic changes within the lateral-line system of Anura. Anatomy and Embryology 175:431–442.PubMedCrossRefGoogle Scholar
  64. Werner G (1960) Das Labyrinth der Wirbeltiere. Jena: Fischer Verlag, pp. 309.Google Scholar
  65. Wever EG (1974) The evolution of vertebrate hearing. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, V/l: Auditory System. Berlin: Springer, pp. 423–454.Google Scholar
  66. Wever EG (1985) The Amphibian Ear. New Jersey: Princeton University Press, p. 405.Google Scholar
  67. White JS, Baird IL (1982) Comparative morphological features of the caecilian inner ear with comments on the evolution of amphibian auditory structures. Scann Electron Micr 3:1301–1312.Google Scholar
  68. Will U, Fritzsch B (1988) The octavus nerve of amphibians: Patterns of afferents and efferents. In: Fritzsch B, Ryan M, Wilczynski W, Hetherington T, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley and Sons, pp. 159–183.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Bernd Fritzsch

There are no affiliations available

Personalised recommendations