Skip to main content

Convergence of Design in Vertebrate Acoustic Sensors

  • Chapter

Abstract

The senses of the vertebrate inner ear are divided into two categories: senses of balance, which convey information about orientation and motion of the head; and acoustic senses, which convey information about vibrations propagated to the ear from remote sources. In the mammalian inner ear, acoustic senses are concentrated in the cochlea, and senses of balance in the vestibule (that part of the inner ear that serves as the entrance to the cochlea). This division led to lumping of vertebrate inner-ear senses into vestibular senses and auditory senses—a mixture of structural and functional nomenclature that is inappropriate for inner ears of all vertebrates other than therian mammals. In monotremes, birds, and many reptiles, for example, the lagena resides at the distal end of the cochlea or cochlear homolog—not in the vestibule (Baird 1974); and we do not know yet whether the sensitivities of the lagenae in these animals are auditory, nonauditory, or both.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashcroft DW, Hallpike CS (1934) On the function of the saccule. J Laryngol 49:450–460.

    Google Scholar 

  • Ashmore JF (1983) Frequency tuning in a frog vestibular organ. Nature 304:536–538.

    Article  PubMed  CAS  Google Scholar 

  • Ashmore JF (1988) Ionic mechanisms in hair cells of the mammalian cochlea. Progr Brain Res 74:1–7.

    Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol. V/l, Berlin: Springer-Verlag, pp. 159–212.

    Google Scholar 

  • Baird RA, Lewis ER (1986) Correspondences between afferent innervation patterns and response dynamics in the bullfrog utricle and lagena. Brain Res 369: 48–64.

    Article  PubMed  CAS  Google Scholar 

  • Bekesy G von (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Bialek WS (1983) Thermal and quantum noise in the ear. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Delft: Delft University Press, pp. 185–192.

    Google Scholar 

  • Bialek WS, Schweitzer A (1985) Quantum noise and the threshold of hearing. Phys Rev Lett 54:725–728.

    Article  PubMed  Google Scholar 

  • Blanks RHI, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. Exp Brain Res 25:369–390.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Rasmussen GL (1963) Projection of the cochlear and lagenar nerves on the cochlear nuclei of the pigeon. J Comp Neurol 120:463–475.

    Article  PubMed  CAS  Google Scholar 

  • Bracewell RN (1978) The Fourier Transform and Its Application. New York: McGraw-Hill.

    Google Scholar 

  • Budelli R, Macadar O (1979) Statoacoustic properties of utricular afferents. J Neurophysiol 42:1479–1493.

    PubMed  CAS  Google Scholar 

  • Caston J, Precht W, Blanks RHI (1977) Response characteristics of frog’s lagena afferents to natural stimulation. J Comp Physiol 118:273–289.

    Article  Google Scholar 

  • Cazin L, Lannou L (1975) Response du saccule a la stimulation vibratoire directe de la macule, chez la grenouille. CR Seance Soc Biol Rouen 169:1067–1071.

    CAS  Google Scholar 

  • Corwin JT (1981) Peripheral auditory physiology in the lemon shark: evidence of parallel otolithic and nonotolithic sound detection. J Comp Physiol 142: 379–390.

    Article  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • de Boer E (1968) Reverse correlation. I. A heuristic introduction to the technique of triggered correlation with application to the analysis of compound systems. Proc K Ned Akad Wet C71:472–486.

    Google Scholar 

  • de Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63:115–135.

    Article  PubMed  Google Scholar 

  • DeFelice LJ (1981) Introduction to Membrane Noise. New York: Plenum.

    Google Scholar 

  • Denk W, Webb WW (1989) Simultaneous recording of fluctuations of hair-bundle deflection and intracellular voltage in saccular hair cells. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. New York: Plenum, pp. 125–133.

    Google Scholar 

  • Denton EJ, Gray JAB, Blaxter JHS (1979) The mechanics of the clupeid acousticolateralis system: frequency responses. J Mar Biol Assoc UK 59:27–47.

    Article  Google Scholar 

  • Dickman JD, Correia MJ (1989) Responses of pigeon horizontal semicircular canal afferent fibers II: high frequency mechanical stimulation. J Neurophysiol 62:1102–1112.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Manley GA (1981) Auditory nerve fiber activity in the Tokay Gecko II. temperature effect on tuning. J Comp Physiol 142:219–226.

    Article  Google Scholar 

  • Eggermont JJ, Johannesma PIM, Aertsen AMHJ (1983 Reverse correlation methods in auditory research. Q Rev Biophys 16:341–414.

    Article  PubMed  CAS  Google Scholar 

  • Enger PS (1963) Single unit activity in the peripheral auditory system of a teleost fish. Acta Physiol Scand 59(Suppl. 3):9–48.

    Google Scholar 

  • Evans EF (1989) Cochlear filtering: a view seen through the temporal discharge patterns of single cochlear nerve fibers. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. Plenum, New York: pp. 241–250.

    Google Scholar 

  • Fay RR, Kendall JI, Popper AN, Tester AL (1974) Vibration detection by the macula neglecta of sharks. Comp Biochem Physiol 47A: 1235–1240.

    Article  Google Scholar 

  • Fay RR, Popper AN (1980) Structure and function in teleost auditory systems. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. Berlin: Springer-Verlag, pp. 3–42.

    Google Scholar 

  • Feng AS, Narins PM, Capranica RR (1975) Three populations of primary auditory fibers in the bullfrog (R. catesbeiana): their peripheral origins and frequency sensitivities. J Comp Physiol 100:221–229.

    Article  Google Scholar 

  • Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neuro-physiol 39:996–1008.

    CAS  Google Scholar 

  • Frischkopf LS, Goldstein MH (1963) Responses to acoustic stimuli from single units in the eighth nerve of the bullfrog. J Acoust Soc Am 35:1219–1228.

    Article  Google Scholar 

  • Fuchs PA (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Fuchs PA, Evans MG (1988) Evidence for electrical tuning in hair cells isolated from the alligator cochlea. ARO Abstr 11:16.

    Google Scholar 

  • Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30:1377–1403.

    PubMed  CAS  Google Scholar 

  • Guillemin EA (1957) Synthesis of Passive Networks. New York: John Wiley, pp. 1–67, 186–210.

    Google Scholar 

  • Gummer AW, Klinke R (1983) Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus. Hear Res 12:367–380.

    Article  PubMed  CAS  Google Scholar 

  • Guralnik DB (1970) Webster’s New World Dictionary of the American Language. New York: World Publishing Co., p. 1509.

    Google Scholar 

  • Hamilton DW (1963) Posterior division of the eighth cranial nerve in Lacerta vivipara. Nature (London) 200:705–706.

    Article  CAS  Google Scholar 

  • Hartmann WM (1988) Pitch perception and the segregation and integration of auditory entities. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurological Bases of Hearing. New York: Wiley, pp. 623–645.

    Google Scholar 

  • Helmholtz HLF (1885) On The Sensations of Tone. New York: Dover. (1954 Republication of the 1885 English-language edition.).

    Google Scholar 

  • Hillery CM, Narins PM (1984) Neurophysiological evidence for a traveling wave in the amphibian inner ear. Science 225:1037–1039.

    Article  PubMed  CAS  Google Scholar 

  • Hillery CM, Narins PM (1987) Frequency and time domain comparison of low-frequency auditory fiber responses in two anuran amphibians. Hear Res 25:233–248.

    Article  PubMed  CAS  Google Scholar 

  • Hillman DE (1969) New ultrastructural findings regarding a vestibular ciliary apparatus and its possible significance. Brain Res 13:407–412.

    Article  PubMed  CAS  Google Scholar 

  • Holton TL, Hudspeth AJ (1986) The transduction channels of hair cells from the bullfrog characterized by noise analysis. J Physiol (London) 375:195–227.

    CAS  Google Scholar 

  • Houseley GD, Norris CH, Guth PS (1989) Electro-physiological properties and morphology of hair cells isolated from the semicircular canal of the frog. Hear Res 38:259–276.

    Article  Google Scholar 

  • Hudspeth AJ, Lewis RS (1988) Kinetic analysis of voltage and ion dependent conductances in saccular hair cells of the bullfrog, Rana catesbeiana. J Physiol 400:275–297.

    PubMed  CAS  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER (1976) Surface morphology of the bullfrog amphibian papilla. Brain Behav Evol 13:196–215.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER (1984) On the frog amphibian papilla. Scan Electr Microsc 1984:1899–1913.

    Google Scholar 

  • Lewis ER (1986) Adaptation, suppression and tuning in amphibian acoustical fibers. In: Moore, BJC and Patterson RD (eds) Auditory Frequency Selectivity. New York: Plenum, pp. 129–136.

    Google Scholar 

  • Lewis ER (1988) Tuning in the bullfrog ear. Biophys j 53:441–447.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER (1990) Electrical tuning in the ear. Comm Theoret Biol 1:253–273.

    Google Scholar 

  • Lewis ER, Baird RA, Leverenz EL, Koyama H (1982) Inner ear: dye injection reveals peripheral origins of specific sensitivities. Science 215:1641–1643.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Henry KR (1989a) Transient responses to tone bursts, Hear Res 37:219–240.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Henry KR (1989b) Cochlear nerve responses to waveform singularities and envelope corners. Hear Res 39:209–224.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Leverenz EL (1983) Morphological basis for tonotopy in the anuran amphibian papilla. Scan Electr Microsc 1983:189–200.

    Google Scholar 

  • Lewis ER, Lombard RE (1988) In: Fritsch B (ed) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 93–123.

    Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Frequency tuning and ionic conductances in hair cells of the bullfrog sacculus. In: Klinke R, Hartmann R (eds) Hearing-Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 17–24.

    Google Scholar 

  • Lombard RE (1980) The structure of the amphibian auditory periphery: a unique experiment in terrestrial hearing. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 121–138.

    Google Scholar 

  • Lowenstein O (1970) The electrophysiological study of the responses of the isolated labyrinth of the lamprey (Lampreta fluviatilis) to angular acceleration, tilting and mechanical vibration. Proc R Soc London Ser B 174:419–434.

    Article  CAS  Google Scholar 

  • Lowenstein O, Roberts TDM (1949) The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J Physiol (London) 110:392–415.

    CAS  Google Scholar 

  • Lowenstein O, Roberts TDM (1951) The localization and analysis of the response to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J Physiol (London) 114:471–489.

    CAS  Google Scholar 

  • Lowenstein O, Thornhill RA (1970) The labyrinth of Myxine: anatomy, ultrastructure and electrophysiology. Proc Roy Soc London Ser B 176:21–42.

    Article  Google Scholar 

  • McNally WJ, Tait J (1925) Ablation experiments in the labyrinth of the frog. Am J Physiol 75:155–179.

    Google Scholar 

  • Moffat AJM, Capranica RR (1976) Effects of temperature on the response of the auditory nerve in the American toad (Bufo americanus). J Acoust Soc Am 60 (suppl. 1):S80.

    Article  Google Scholar 

  • Moffat AJM, Capranica RR (1978) Middle ear sensitivity in anurans and reptiles as measured by light scattering spectroscopy, J Comp Physiol 127:97–107.

    Article  Google Scholar 

  • Narins PM, Hillery CM (1983) Frequency coding in the inner ear of anuran amphibians. In: Klinke R, Hartmann R (eds) Hearing-Physiological Bases and Psychophysics. Heidelberg: Springer-Verlag, pp. 70–76.

    Google Scholar 

  • Palmer AR, Russell D (1986) Phase-locking in the cochlear nerve of the guinea pig and its relation to the receptor potential of inner hair cells. Hear Res 24:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR, Wilson JP (1982) Spontaneous and evoked acoustic emissions in the frog, Rana esculenta. J Physiol 324:66P.

    Google Scholar 

  • Pitchford S, Ashmore JF (1987) An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria. Hear Res 27:75–84.

    Article  PubMed  CAS  Google Scholar 

  • Platt C (1983) The peripheral vestibular system of fishes. In: Northcutt TG, Davis RE (eds) Fish Neurobiology, Vol. 1. Ann Arbor: University of Michigan Press, pp. 89–123.

    Google Scholar 

  • Ranke OF (1950) Theory of operation of the cochlea: a contribution to the hydrodynamics of the cochlea. J Acoust Soc Am 22:772–777.

    Article  Google Scholar 

  • Russell IJ, Richardson GP (1987) The morphology and physiology of hair cells in organotypic cultures of the mouse cochlea. Hear Res 31:9–24.

    Article  PubMed  CAS  Google Scholar 

  • Schermuly L, Klinke R (1985) Change of characteristic frequency of pigeon primary auditory afferents with temperature. J Comp Physiol 156:209–211.

    Article  Google Scholar 

  • Shofner WP, Feng AS (1983) A quantitative light microscopic study of the bullfrog amphibian papilla tectorium: correlation with tonotopic organization. Hear Res 11:103–116.

    Article  PubMed  CAS  Google Scholar 

  • Shofner WP, Feng AS (1984) Quantitative light and scanning electron microscopic study of the developing auditory organs in the bullfrog: implications on their functional characteristics. J Comp Neurol 224:141–154.

    Article  PubMed  CAS  Google Scholar 

  • Siebert WM (1974) Ranke revisited—a simple shortwave cochlear model. J Acoust Soc Am 56:594–600.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Klinke R (1984) Effects of temperature on the properties of primary auditory fibers of the spectacled caiman, Caiman crocodilus. J Comp Physiol 155:19–30.

    Article  Google Scholar 

  • Sneary M, Lewis ER (1989) Response properties of turtle auditory afferent nerve fibers: evidence for a high-order tuning mechanism. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. New York: Plenum, pp. 235–240.

    Google Scholar 

  • Steibler I, Narins PM (1990) Temperature dependence of auditory nerve response properties in the frog. Hear Res 46:63–81.

    Article  Google Scholar 

  • Taber LA, Steele CR (1981) Cochlear model including three-dimensional fluid and four modes of partition flexibility. J Acoust Soc Am 70:426–436.

    Article  PubMed  CAS  Google Scholar 

  • van Dijk P, Lewis ER, Wit HP (1990) Temperature effects on auditory nerve fiber response in the American bullfrog. Hear Res 44:231–240.

    Article  PubMed  Google Scholar 

  • van Dijk P, Wit HP (1987) Temperature dependence of frog spontaneous otoacoustic emissions. J Acoust Soc Am 82:2147–2150.

    Article  PubMed  Google Scholar 

  • Weiss TF (1982) Bidirectional transduction in vertebrate hair cells: a mechanism for coupling mechanical and electrical processes. Hear Res 7:353–360.

    Article  PubMed  CAS  Google Scholar 

  • Weiss TF, Mulroy M, Turner R, Pike R (1976) Tuning of single fibers in the cochlear nerve of the alligator lizard: relation to receptor morphology. Brain Res 115:71–90.

    Article  PubMed  CAS  Google Scholar 

  • Weiss TF, Rose C (1988a) Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard. Hear Res 33:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Weiss TF, Rose C (1988b) A comparison of synchronization filters in different auditory receptor organs. Hear Res 33:175–180.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG (1985) The Amphibian Ear, Princeton: Princeton University Press.

    Google Scholar 

  • Yourgrau W, van der Merwe A, Raw G (1966) Treatise on Irreversible and Statistical Thermophysics. New York: Macmillan.

    Google Scholar 

  • Zwislocki JJ (1950) Theory of the acoustical action of the cochlea. J Acoust Soc Am 22:778–784.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Lewis, E.R. (1992). Convergence of Design in Vertebrate Acoustic Sensors. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics