Skip to main content

The New Generation System for the CMU Navlab

  • Chapter

Part of the book series: Springer Series in Perception Engineering ((SSPERCEPTION))

Abstract

The Carnegie—Mellon University Navigational Laboratory (the CMU Navlab) project integrates sensing, image understanding, planning, control, and software systems architectures onto a self-contained mobile robot. The Navlab drives autonomously along a variety of roads (dirt, gravel unmarked bicycle paths, city streets, rural roads) and cross-country. This chapter describes the Navlab and its contributions in color vision, neural nets, 3-D perception, planning, and robot architectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amidi, Omead (1990). “Integrated Mobile Robot Control.” Technical Report, Robotics Institute, Carnegie—Mellon University.

    Google Scholar 

  2. Anandan, P. (1989). “A Computational Framework and an Algorithm for the Measurement of Visual Motion.” IJCV 2(3), 283–310.

    Article  Google Scholar 

  3. Aubert, Didier, and Thorpe, Charles (1990). “Color Image Processing for Navigation: Two Road Trackers.” Technical Report CMU-RI-TR-90–09, Robotics Institute, Carnegie—Mellon University.

    Google Scholar 

  4. Bergman, A., and Cowan, C. K. (1986). “Noise-Tolerant Range Analysis for Autonomous Navigation.” In Proc. IEEE Conf. on Robotics and Automation. San Francisco.

    Google Scholar 

  5. Bhanu, Bir, Symosek, Peter, Ming, John, Burger, Wilheml, Nasr, Hatem, and Kim, Jon (1989). “Qualitative Target Motion Detection and Tracking.” In Proc. Image Understanding Workshop. Morgan Kaufmann Publishers.

    Google Scholar 

  6. Bobick, Aaron, and Bolles, Robert (1989). “Representation Space: An Approach to the Integration of Visual Information.” In Proc. Image Understanding Workshop. Morgan Kaufmann Publishers.

    Google Scholar 

  7. Brooks, R. (1986). “A Robust Layered Control System for a Mobile Robot.” IEEE Journal of Robotics and Automation RA-2(1), 14–23.

    Article  Google Scholar 

  8. Chappell, Steven G. (1989). “A Simple World Model for an Autonomous Vehicle.” In Sixth International Symposium on Unmanned Untethered Submersible Technology. Marine Systems Engineering Laboratory, University of New Hampshire, June 1989.

    Google Scholar 

  9. Crisman, Jill D., and Thorpe, Charles E. (1990). “Color Vision for Road Following.” Vision and Navigation: The Carnegie Mellon Navlab. Kluwer Academic Publishers, Chapter 2.

    Google Scholar 

  10. Daily, M. J., Harris, J. G., and Reiser, K. (1987). “Detecting Obstacles in Range Imagery.” In Proc. Image Understanding Workshop. Los Angeles, 1987.

    Google Scholar 

  11. Daily, M. J., Harris, J. G., and Reiser, K. (1988). “An Operational Perception System for Cross-Country Navigation.” In Proc. Image Understanding Workshop. Cambridge, Massachusetts, 1988.

    Google Scholar 

  12. Dunlay, R. T., and Morgenthaler, D. G. (1986). “Obstacle Detection and Avoidance from Range Data.” In Proc. SPIE Mobile Robots Conference. Cambridge, Massachusetts, 1986.

    Google Scholar 

  13. T. Dunlay (1988). “Obstacle Avoidance Perception Processing for the Autonomous Land Vehicle.” In Proc. IEEE Robotics and Automation. Philadelphia, 1988.

    Google Scholar 

  14. Fennema, Claude, Hanson, Allen, Riseman, Edward (1989). “Toward Autonomous Mobile Robot Navigation.” In DARPA Image Understanding Workshop. Morgan Kaufmann.

    Google Scholar 

  15. Goto, Y., and Stentz, A. (1987). “Mobile Robot Navigation: The CMU System.” IEEE Expert.

    Google Scholar 

  16. Goto, Yoshimasa, Shafer, Steven A., and Stentz, Anthony (1990). “The Driving Pipeline: A Driving Control Scheme for Mobile Robots.” Vision and Navigation: The Carnegie—Mellon Navlab. Kluwer Academic Publishers, Chapter 10.

    Google Scholar 

  17. Kehtarnavaz, N., and Griswold, N. (1989). “Establishing Collision-Zones under Uncertainty.” In Proc. Mobile Robots IV, Society of Photo-optical Instrumentation Engineers, Bellingham, Washington, pp. 66–76.

    Google Scholar 

  18. Keirsey, D., Payton, D., and Rosenblatt, J. K. (1988). “Autonomous Navigation in Cross Country Terrain.” In Proc. Image Understanding Workshop. Morgan Kaufman, San Mateo, California.

    Google Scholar 

  19. Kender, J. R., and Leff, A. (1989). “Why Direction-Giving is Hard: The Complexity of Linear Navigation by Landmarks in One-Dimensional Navigation.” IEEE Transactions on Systems, Man, and Cybernetics 19(6), 1656–1659.

    Article  Google Scholar 

  20. Kenue, Surender K. (1989). “Lanelok: Detection of Lane Boundaries and Vehicle Tracking Using Image-Processing Techniques. Part I: Hough-Transform, Region-Tracing, and Correlation Algorithms.” In Proc. Mobile Robots IV, Society of Photo-optical Instrumentation Engineers, Bellingham, Washington, pp. 221–233.

    Google Scholar 

  21. Kenue, Surender K. (1989). “Lanelok: Detection of Lane Boundaries and Vehicle Tracking Using Image-Processing Techniques. Part II: Template Matching Algorithms.” In Proc. Mobile Robots IV, Society of Photo-optical Instrumentation Engineers, Bellingham, Washington, pp. 234–245.

    Google Scholar 

  22. Dowling, Kevin, Guzikowski, Robert, Ladd, Jim, Pangels, Henning, Singh, Sanjiv, and Whittaker, William (1990). “Navlab: An Autonomous Navigation Testbed.” Vision and Navigation: The Carnegie—Mellon Navlab. Kluwer Academic Publishers, Norwell, Massachusetts, Chapter 12.

    Google Scholar 

  23. Kluge, Karl, and Thorpe, Charles E. (1990). “Explicit Models for Robot Road Following.” Vision and Navigation: The Carnegie—Mellon Navlab. Kluwer Academic Publishers, Norwell, Massachusetts, Chapter 3.

    Google Scholar 

  24. Levitt, T., Lawton, D., Chelberg, D., and Nelson, P. (1987). “Qualitative Navigation.” In Proc. Image Understanding Workshop. Morgan Kaufmann, San Mateo, California, pp. 447–465.

    Google Scholar 

  25. Mysliwetz, Birger D., and Dickmanns, E. D. (1987). “Distributed Scene Analysis for Autonomous Road Vehicle Guidance.” In Proc. SPIE Conference on Mobile Robots. November, 1987.

    Google Scholar 

  26. Ozaki, T., Ohzora, M., and Kurahashi, K. (1989). “Image Processing System for Autonomous Vehicle.” In Proc. Mobile Robots IV, Society of Photo-optical Instrumentation Engineers, Bellingham, Washington.

    Google Scholar 

  27. Pomerleau, Dean A. (1990). “Neural Network-Based Autonomous Navigation.” Vision and Navigation: The Carnegie—Mellon Navlab. Kluwer Academic Publishers, Norwell, Massachusetts, Chapter 5.

    Google Scholar 

  28. Shafer, S., Stentz, A., and Thorpe, C. (1986). “An Architecture for Sensor Fusion in a Mobile Robot.” Technical Report CMU-RI-TR-86–9, Robotics Institute, Carnegie—Mellon University.

    Google Scholar 

  29. Stentz, Anthony (1990). “Multi-Resolution Constraint Modeling for Mobile Robot Planning.” Vision and Navigation: The Carnegie—Mellon Navlab. Kluwer Academic Publishers, Norwell, Massachusetts, Chapter 11.

    Google Scholar 

  30. Stentz, Anthony (1990). “The CODGER System for Mobile Robot Navigation.” Vision and Navigation: The Carnegie—Mellon Navlab. Kluwer Academic Publishers, Norwell, Massachusetts, Chapter 9.

    Google Scholar 

  31. Thorpe, C., Hebert, M., Kanade, T., and Shafer, S. (1988). “Vision and Navigation for the Carnegie-Mellon Navlab.” IEEE PAMI 10(3), 361–372.

    Article  Google Scholar 

  32. Turk, M., Morgenthaler, D., Gremban, K., and Marra, M. (1988). “VITS—A Vision System for Autonomous Land Vehicle Navigation.” IEEE PAMI 10(3), 342–360.

    Article  Google Scholar 

  33. Waxman, A. M., LeMoigne, J. J., Davis, L. S, and Siddalingalah, T. (1987). “A Visual Navigation System for Autonomous Land Vehicle.” IEEE J. Robotics and Automation RA-3, 124–141, April.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Thorpe, C., Hebert, M., Kanade, T., Shafer, S. (1992). The New Generation System for the CMU Navlab. In: Masaki, I. (eds) Vision-based Vehicle Guidance. Springer Series in Perception Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2778-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2778-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7665-4

  • Online ISBN: 978-1-4612-2778-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics