Advertisement

Applications of Algebraic Geometry to Computer Vision

  • S. J. Maybank
Conference paper
Part of the Progress in Mathematics book series (PM, volume 109)

Abstract

There is an increasing interest in applications of algebraic geometry to computer vision. There are at least three possible reasons for this: i) certain vision problems naturally involve polynomial equations; ii) with the increase in available computing power it is easier to implement algorithms which stay close to the geometry underlying vision; and iii) algebraic geometry may in future provide methods for assessing the stability of algorithms against small perturbations in the data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchanan T. 1992 Critical sets for reconstruction using lines. Proc. 2nd European Conf. on Computer Vision, ECCV92.Google Scholar
  2. 2.
    Demazure M. 1988 Sur deux problèmes de reconstruction. Technical Report No. 882, INRIA, Rocquencourt, France.Google Scholar
  3. 3.
    Faugeras O.D. 1990 On the motion of 3D curves and its relationship to optical flow. Proc. 1st European Conf. on Computer Vision, ECCV90, Lecture Notes in Computer Science 427, Springer-Verlag.Google Scholar
  4. 4.
    Faugeras O.D. Luong Q.-T. & Maybank S.J. 1992 Camera self-calibration: theory and experiments. Proc. 2nd European Conf. on Computer Vision, ECCV92.Google Scholar
  5. 5.
    Faugeras O.D. & Maybank S.J. 1990 Motion from point matches: multiplicity of solutions. International J. Computer Vision 4, 225–246.CrossRefGoogle Scholar
  6. 6.
    Forsyth D., Mundy J., Zisserman A., Coelho C., Heller A. & Rothwell C. 1991 Invariant descriptors for 3-D object recognition and pose. IEEE Trans. Pattern Analysis and Machine Intelligence 13, 971–991.CrossRefGoogle Scholar
  7. 7.
    Hofmann W. 1950 Das Problem der “Gerfährlichen Flächen„ in Theorie und Praxis. Dissertation, Fakultät für Bauwesen der Technischen Hochschule München, München, FR Germany. Published in Reihe C, No. 3 der Deutschen Geodetischen Kommission bei der Bayerischen Akademie der Wissenschaften, München 1953.Google Scholar
  8. 8.
    Horn B.K.P. 1986 Robot Vision. Cambridge, Massachusetts: The MIT Press.Google Scholar
  9. 9.
    Huang T.S. & Faugeras O.D. 1989 Some properties of the E matrix in two view motion estimation. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 1310–1312.CrossRefGoogle Scholar
  10. 10.
    Kruppa E. 1913 Zur Ermittlung eines Objektes zwei Perspektiven mit innere Orientierung. Sitz-Ber. Akad. Wiss., Wien, math. naturw. Kl., Abt. IIa. 122, 1939–1948.MATHGoogle Scholar
  11. 11.
    Liu Y. & Huang T.S. 1988 Estimation of rigid body motion using straight line correspondences. Computer Vision, Graphics, and Image Processing 44, 35–57.CrossRefGoogle Scholar
  12. 12.
    Longuet-Higgins H.C. 1981 A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135.CrossRefGoogle Scholar
  13. 13.
    Longuet-Higgins H.C. 1988 Multiple interpretations of a pair of images of a surface. Proc. Royal Soc. London, Series B 227, 399–410.CrossRefGoogle Scholar
  14. 14.
    Maybank S.J. 1990 The projective geometry of ambiguous surfaces. Phil. Trans. Royal Soc. London, Series A 332, 1–47.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Maybank S.J. 1991 The projection of two non-coplanar conics. In Proc. First DARPA-ESPRIT Joint Workshop on Applications of Invariant Theory to Computer Vision, Reykjavik, 25–28 March 1991.Google Scholar
  16. 16.
    Maybank S.J. & Faugeras O.D. 1992 A theory of self-calibration of a moving camera. Accepted by International J. Computer Vision.Google Scholar
  17. 17.
    Maybank S.J. 1992 Theory of Reconstruction from Image Motion. Springer-Verlag, to appear.Google Scholar
  18. 18.
    J. Mundy & A. Zisserman (eds.) 1992 Applications of Invariance in Computer Vision. To appear, MIT Press.Google Scholar
  19. 19.
    Spetsakis M.E. & Aloimonos J. 1990 Structure from motion using line correspondences. International J. Computer Vision 4, 171–183.CrossRefGoogle Scholar
  20. 20.
    Sturm R. 1869 Das Problem der Projectivität und seine Anwendung auf die Flachen zweiten Grades. Math. Annalen 1, 533–573.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Tsai R.Y. & Huang T.S. 1984 Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 13–27.CrossRefGoogle Scholar
  22. 22.
    Weng J., Huang T.S. & Ahuja N. 1992 Motion and structure from line correspondences: closed-form solution, uniqueness, and optimization. IEEE Trans. Pattern Analysis and Machine Intelligence 14, 318–336.CrossRefGoogle Scholar
  23. 23.
    Wilczynski E.J. 1906 Projective Differential Geometry of Curves and Surfaces. Leipzig: Teubner.MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • S. J. Maybank
    • 1
  1. 1.GEC-Marconi Hirst Research CentreWembleyUK

Personalised recommendations