Skip to main content

Cellular Dynamata

  • Chapter
  • 640 Accesses

Abstract

At the end of the sixties, our program for dynamics lost momentum, and some of us turned to applications for inspiration. My own attempts at modeling in the biological sciences led me to complex dynamics, a blend of our own style of dynamical systems theory with system dynamics. A complex dynamical system is a directed graph, with a dynamical scheme (dynamical system with parameters) at each node, and a coupling function on each edge, expressing the control parameters of one scheme as a function of the states of another.1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ralph H. Abraham, Complex dynamical systems, Mathematical Modelling in Science and Technology, eds. X.J.R. Avula, R.E. Kalman, A.I. Leapis, and E.Y. Rodin, Pergamon Elmsford, NY, pp. 82–86. 1984

    Google Scholar 

  • Ralph H. Abraham, Cellular dynamical systems, Mathematics and Computers in Biomedical Applications, Proc. IMACS World Congress, Oslo, 1985, eds. J. Eisen-feld and C. DeLisi, North-Holland, Amsterdam, pp. 7–8. 1986

    Google Scholar 

  • Ralph H. Abraham, Cuspoidal nets, Toward a Just Society for Future Generations, eds. B.A. and B.H. Banothy, Int’l Society for the Systems Sciences, pp. 66–683. 1990a

    Google Scholar 

  • Ralph H. Abraham, Visualization techniques for cellular dynamata, Introduction of Nonlinear Physics, ed. Lui Lam, Springer-Verlag, Berlin. 1990b

    Google Scholar 

  • Ralph H. Abraham, Gottfried Mayer-Kress, Alexander Keith, and Matthew Koebbe, Double cusp models, public opinion, and international security, Int. J. Bifurcations Chaos 1(2), 417–430. 1991a

    Article  MathSciNet  MATH  Google Scholar 

  • Ralph H. Abraham, John B. Corliss, and John E. Dorband, Order and chaos in the toral logistic lattice, Int. J. Bifurcations Chaos 1(1), 227–234. 1991b

    Article  MathSciNet  MATH  Google Scholar 

  • Ralph H. Abraham, Cellular dynamata and morphogenesis: a tutorial, preprint. 1991c

    Google Scholar 

  • Martin Beckmann and Tonu Puu, Spatial Economics: Density, Potential, and Flow, North-Holland Amsterdam. 1985

    Google Scholar 

  • Martin Beckmann and Tonu Puu, Spatial Structures, Springer-Verlag, Berlin. 1990

    Google Scholar 

  • James P. Crutchfield and Kunihiko Kaneko, Phenomenology of spatio-temporal chaos, Directions in Chaos, ed. Hao Bai-Lin, World Scientific, Singapore. 1987

    Google Scholar 

  • Walter Freeman, The physiology of perception, Sci. Am. 264 (2), 78–85. 1991

    Article  MathSciNet  Google Scholar 

  • Wulf Gaertner and Jochen Jungeilges, A model of interdependent consumer behavior: nonlinearities in R2, preprint. 1991

    Google Scholar 

  • Morris W. Hirsch, Convergent activation dynamics for continuous time networks, Neural Networks 2, 331–349. 1989

    Article  Google Scholar 

  • Kunihiko Kaneko, Simulating Science with Coupled Map Lattices, Formation, Dynamics, and Statistics of Patterns, ed. K. Kawasaki, A. Onuki, and M. Suzuki, World Scientific, Singapore. 1990

    Google Scholar 

  • Nancy Kopell and G.B. Ermentrout, Coupled oscillators and mammalian small intestines, Oscillations in Mathematical Biology, ed. J.P.E. Hodgson, Springer-Verlag, Berlin, pp. 24–36. 1983

    Google Scholar 

  • Steve Smale, A mathematical model of two cells via Turing’s equation, The Hopf Bifurcation and its Applications, eds. J.E. Marsden and M. McCracken, Springer-Verlag, New York. 1976

    Google Scholar 

  • E. Christopher Zeeman, Duffing’s equation in brain modelling, Catastrophe Theory, ed. E. Christopher Zeeman, Addison-Wesley, Reading, MA, pp. 293–300. 1977

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Abraham, R. (1993). Cellular Dynamata. In: Hirsch, M.W., Marsden, J.E., Shub, M. (eds) From Topology to Computation: Proceedings of the Smalefest. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2740-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2740-3_50

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7648-7

  • Online ISBN: 978-1-4612-2740-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics