Skip to main content

Abstract

A dynamical system in this article consists of a map of a manifold to itself or a flow generated by an autonomous system of ordinary differential equations. For definiteness, we shall discuss the discrete-time case, although most things here have their continuous-time versions. We shall not attempt to define “chaos, ” except to mention two of its essential ingredients:

  1. 1.

    exponential divergence of nearby orbits

  2. 2.

    lack of predictability.

This is an expanded version of a lecture presented in Berkeley in August 1990, in a conference honoring Steve Smale on his 60th birthday. The author is partially supported by NSF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anosov, D., Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Inst. Math. No. 90 1967. Amer. Math. Soc. 1969 (translation), pp. 1–235.

    Google Scholar 

  2. Ballman, W. and Brin, M., On the ergodicity of geodesin flows, Ergod.Theory Dynam. Syst. 2 (1982), 311–315.

    Article  Google Scholar 

  3. Benedicks, M. and Carleson, L., On iterations of 1-ax2 on (−1, 1)Ann. Math. 122 (1985), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  4. ———, and ———, The dynamics of the Henon map, Ann. Math. 133 (1991), 73–169.

    Article  MathSciNet  MATH  Google Scholar 

  5. ———, and Young, L.-S., Absolutely continuous invariant measures and random perturbations for certain one-dimensional maps, Erg. Th. & Dynam. Sys. 12 (1992), 13–38.

    MATH  Google Scholar 

  6. ——— and ———, SBR measures for certain Henon maps, to appear in Inventiones (1993).

    Google Scholar 

  7. Brin, M. and Katok, A., On local entropy, Geometric Dynamics, Springer Lecture Notes in Mathematics, No. 1007, Springer-Verlag, Berlin, 1983, pp. 30–38.

    Google Scholar 

  8. Blokh, A.M. and Lyubich, M. Yu., Measurable dynamics of S-unimodal maps of the interval, preprint, 1990.

    Google Scholar 

  9. Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer Lectures Notes in Mathematics No. 470, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  10. Bunimovich, L.A., On the ergodic properties of nowhere dispersing billiards, Commun. Math. Phys. 65 (1979), 295–312.

    Article  MathSciNet  MATH  Google Scholar 

  11. Collet, P., Ergodic properties of some unimodal mappings of the interval, preprint, 1984.

    Google Scholar 

  12. ——— and Levy, Y., Ergodic properties of the Lozi mappings, Commun.Math. Phys. 93 (1984), 461–482.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chernov, N.I. and Sinai Ya.G., Ergodic properties of some systems of 2-dimensional discs and 3-dimensional spheres, Russ. Math. Surveys 42 (1987), 181–207.

    MathSciNet  MATH  Google Scholar 

  14. Eckmann, J.-P. and Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57 (1985), 617–656.

    Article  MathSciNet  Google Scholar 

  15. Fathi, A., Herman, M., and Yoccoz, J.-C., A proof of Pesin’s stable manifold theorem, Springer Lecture Notes in Mathematics. No. 1007, Springer-Verlag, Berlin, 1983, pp. 117–215.

    Google Scholar 

  16. Furstenberg, H. and Kifer, Yu., Random matrix products and measures on projective spaces, Israel J. Math. 46 (1–2) (1983), 12–32.

    Article  MathSciNet  MATH  Google Scholar 

  17. Frederickson, P., Kaplan, K.L., Yorke, E.D. and Yorke, J.A., The Lyapunov dimension of strange attractors, J. Diff. Eq. 49 (1983) 185–207.

    Article  MathSciNet  MATH  Google Scholar 

  18. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  19. Jakobson, M., Absolutely continuous invariant measures for oneparameter families of one-dimensional maps, Commun. Math. Phys. 81 (1981), 39–88.

    Article  MathSciNet  MATH  Google Scholar 

  20. Katok, A., Bernoulli diffeomorphisms on surfaces, Ann. Math. 110 (1979), 529–547.

    Article  MathSciNet  MATH  Google Scholar 

  21. ———, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHES 51 (1980), 137–174.

    MathSciNet  MATH  Google Scholar 

  22. ——— and Kifer, Yu., Random perturbations of transformations of an interval, J. Analy. Math. 47 (1986), 194–237.

    MathSciNet  Google Scholar 

  23. ——— and Strelcyn, J.M., Invariant Manifolds, Entropy and Billiards;Smooth Maps with Singularities, Springer Lecture Notes in Mathematics No. 1222, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  24. Kifer, Yu., On small random perturbations of some smooth dynamical systems, Math. USSR Ivestjia 8 (1974), 1083–1107.

    Article  MATH  Google Scholar 

  25. ———, General random perturbations of hyperbolic and expanding transformations, J. Anal. Math. 47 (1986), 111–150.

    Article  MathSciNet  MATH  Google Scholar 

  26. ———, Random Perturbations of Dynamical Systems, Birkhauser, Basel, 1986.

    Google Scholar 

  27. Kramli, A., Simanyi, N., and Szasz, D., The K-property of three billiard balls, Ann. Math. 133 (1991), 37–72.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ledrappier, F., Preprietes ergodiques des mesures de Sinai, Publ Math.IHES 59 (1984), 163–188.

    MathSciNet  MATH  Google Scholar 

  29. ———, Dimension of invariant measures, Teubner-Texte zur Math. 94 (1987), 116–124.

    MathSciNet  Google Scholar 

  30. ——— and Strelcyn, J.-M., A proof of the estimation from below in Pesin entropy formula, Ergod. Theory Dynam. Syst. 2 (1982), 203–219.

    Article  MathSciNet  MATH  Google Scholar 

  31. ——— and Young, L.-S., The metric entropy of diffeomorphisms, Ann.Math. 122 (1985), 509–574.

    Article  MathSciNet  MATH  Google Scholar 

  32. ——— and ———, Stability of Lyapunov exponents, Ergod. Th. & Dynam. Sys. 11 (1991), 469–484.

    MathSciNet  MATH  Google Scholar 

  33. Lorenz, E., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130–141.

    Article  Google Scholar 

  34. Mãné, R., A proof of Pesin’s formula, Ergod. Theory Dynam. Syst. 1 (1981), 95–102.

    Article  MATH  Google Scholar 

  35. ———, On the dimension of compact invariant sets of certain nonlinear maps, Springer Lecture Notes in Mathematics No. 898, Springer-Verlag, Berlin, 1981, pp. 230–241 (see erratum).

    Google Scholar 

  36. ———, A proof of the C 1-stability conjecture, Publ. Math. IHES 66 (1988), 160–210.

    Google Scholar 

  37. Newhouse, S., Lectures on Dynamical Systems, Birkhauser, Basel, (1980), 1–114.

    Google Scholar 

  38. Oseledec, V.I., A multiplicative ergodic theorem: Liapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197–231.

    MathSciNet  Google Scholar 

  39. Palis, J. On the C 1-stability conjecture, Publ. Math. IHES 66 (1988), 211–215.

    MathSciNet  MATH  Google Scholar 

  40. Pesin, Ya.B., Families if invariant manifolds corresponding to non zero characteristic exponents, Math. USSR Izvestjia 10 (1978), 1261–1305.

    Article  MATH  Google Scholar 

  41. ———, Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surveys 32 (1977), 55–114.

    Article  MathSciNet  Google Scholar 

  42. ——— and Sinai, Ya.G., Gibbs measures for partially hyperbolic at tractors, Ergod. Theory Dynam. Syst. 2 (1982), 417–438.

    Article  MathSciNet  MATH  Google Scholar 

  43. Pugh, C. and Shub, M., Ergodic attractors, Trans. AMS 312 (1) (1989), 1–54.

    Article  MathSciNet  MATH  Google Scholar 

  44. Robbin, J., A structural stability theorem, Ann. Math. 94 (1971), 447–493.

    Article  MathSciNet  MATH  Google Scholar 

  45. Robinson, C., Structural stability of C 1 diffeomorphisms, J. Diff. Eqs. 22 (1976), 28–73.

    Article  MATH  Google Scholar 

  46. Ruelle, D., A measure associated with Axiom A attractors, Amer. J.Math. 98 (1976), 619–654.

    Article  MathSciNet  MATH  Google Scholar 

  47. ———, An inequality of the entropy of differentiate maps, Bol. Sc. Bra. Mat. 9 (1978), 83–87.

    Article  MathSciNet  MATH  Google Scholar 

  48. ———, Ergodic theory of differentiate systems, Publ. Math. IHES 50 (1979), 27–58.

    MathSciNet  MATH  Google Scholar 

  49. Rychlik, M., A proof of Jakobson’s theorem, Ergod. Theory Dynam.Syst. 8 (1988), 93–109.

    Article  MathSciNet  MATH  Google Scholar 

  50. Sinai, Ya.G., Markov partitions and C-diffeomorphisms, Funct. Anal. Appl. 2 (1968), 64–89.

    Article  MathSciNet  Google Scholar 

  51. ———, Dynamical systems with elastic reflections: ergodic properties of dispersing billiards, Russ. Math. Surveys 25(2) (1970), 137–189.

    Article  MathSciNet  MATH  Google Scholar 

  52. ———, Gibbs measures in ergodic theory, Russ. Math. Surveys 27(4) (1972), 21–69.

    Article  MathSciNet  MATH  Google Scholar 

  53. ———(ed.), Dynamicals Systems II, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  54. Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  55. Ventsel, A.D. and Freidlin, M.I., Small random perturbations of dynamical systems, Russ. Math. Surveys 25 (1970), 1–55.

    Article  Google Scholar 

  56. Wojtkowski, M., Principles for the design of billiards with nonvanishing Lyapunov exponents, Commun. Math. Phys. 105 (1986), 391–414.

    Article  MathSciNet  MATH  Google Scholar 

  57. ———, A system of one-domensional balls with gravity, Commun.Math. Phys. 126 (1990), 507–533.

    Article  MathSciNet  MATH  Google Scholar 

  58. Young, L.-S., Dimension, entropy and Lyapunov exponents, Ergod.Theory Dynam. Syst. 2 (1982), 109–129.

    Article  MATH  Google Scholar 

  59. ———, Stochastic stability of hyperbolic attractors, Ergod. Theory Dynam. Syst. 6 (1986), 311–319.

    MATH  Google Scholar 

  60. ———, Bowen-Ruelle measures for certain piecewise hyperbolic maps, Trans. AMS, 287, No. 1 (1985), 41–48.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Young, LS. (1993). Ergodic Theory of Chaotic Dynamical Systems. In: Hirsch, M.W., Marsden, J.E., Shub, M. (eds) From Topology to Computation: Proceedings of the Smalefest. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2740-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2740-3_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7648-7

  • Online ISBN: 978-1-4612-2740-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics