The Work of Stephen Smale in Differential Topology

  • Morris W. Hirsch

Abstract

The theme of this conference is “Unity and Diversity in Mathematics.” The diversity is evident in the many topics covered. Reviewing Smale’s work in differential topology will reveal important themes that pervade much of his work in other topics, and thus exhibit an unexpected unity in seemingly diverse subjects.

Keywords

Manifold Stratification Beach Bedding Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 9 (1924), 406–407.CrossRefGoogle Scholar
  2. 2.
    M.F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125–132.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Barden, The structure of manifolds, Ph.D. thesis, Cambridge University, 1963.Google Scholar
  4. 4.
    E. Betti, Sopra gli spazi di un numero qualunque di dimensioni, Ann. Mathemat. Pura Appi. 4 (1871).Google Scholar
  5. 5.
    J. Cerf, Isotopie et pseudo-isotopie, Proceedings of International Congress of Mathematicians (Moscow), pp. 429–437 (1966).Google Scholar
  6. 6.
    ———, Sur les difféomorphismes de la sphère de dimension trois (Г4 = 0), Springer Lecture Notes in Mathematics Vol. 53, Springer-Verlag, Berlin, 1968.Google Scholar
  7. 7.
    ———, Les stratification naturelles des espaces de fonctions différentiables reelleset le théorème de la pseudo-isotopie, Pubi. Math. Inst. Hautes Etudes Scient. 39 (1970).Google Scholar
  8. 8.
    J.A. Dieudonné, A History of Algebraic and Differential Topology, 1900–1960, Birkhauser, Boston, 1989.MATHGoogle Scholar
  9. 9.
    R.D. Edwards and R.C. Kirby, Deformations of spaces of embeddings, Ann. Math. 93 (1971), 63–88.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    S.D. Feit, k-mersions of manifolds, Acta Math. 122 (1969), 173–195.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M.L. Gromov, Transversal maps of foliations, Dokl. Akad. Nauk. S.S.S.R. 182 (1968), 225–258 (Russian). English Translation: Soviet Math. Dokl. 9 (1968), 1126–1129. Math. Reviews 38, 6628.MathSciNetGoogle Scholar
  12. 12.
    ———, Stable mappings of foliations into manifolds, Izv. Akad. Nauk. S.S.S.R. Mat. 33 (1969), 707–734 (Russian). English translation: Trans. Math. U.S.S.R. (Izvestia) 3 (1969), 671–693.MATHMathSciNetGoogle Scholar
  13. 13.
    ———, Partial Differential Relations Springer-Verlag, New York, 1986.MATHGoogle Scholar
  14. 14.
    M.L. Gromov and Ja.M. Eliasberg, Construction of non-singular isoperimetric films, Proceedings of Steklov Institute 116 (1971), 13–28.MATHMathSciNetGoogle Scholar
  15. 15.
    ———, Removal of singularities of smooth mappings, Math. USSR (Izvestia) 3 (1971) 615–639.CrossRefGoogle Scholar
  16. 16.
    A. Haefliger, Lectures on the Theorem of Gromov, Liverpool Symposium II Lecture Notes in Mathematics Vol. 209, (C.T.C. Wall, ed.), Springer-Verlag, Berlin, pp. 118–142.Google Scholar
  17. 17.
    A. Haefliger and V. Poenaru, Classification des immersions combinatoires, Pubi. Math. Inst. Hautes Etudes Scient. 23 (1964), 75–91.CrossRefMathSciNetGoogle Scholar
  18. 18.
    J. Hass and J. Hughes, Immersions of surfaces in 3-manifolds, Topology 24 (1985), 97–112.MATHMathSciNetGoogle Scholar
  19. 19.
    A. Hatcher, Concordance spaces, higher simple homotopy theory, and applications, Proceedings of the Symposium on Pure Mathematics, Vol. 32, American Mathematical Society, Providence, RI.Google Scholar
  20. 20.
    ———, A proof of the Smale Conjecture, Diff(S3) = 0(4), Ann. Math. 117 (1983), 553–607.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Hatcher and J. Wagoner, Pseudo-isotopies of compact manifolds, Astérisque 6 (1973).Google Scholar
  22. 22.
    P. Heegard, Forstudier til en topolgisk teori for de algebraiske sammenhang, Ph.D. thesis, University of Copenhagen, 1898.Google Scholar
  23. 23.
    ———, Sur l’analysis situs, Bull. Soc. Math. France 44 (1916), 161–242.MATHMathSciNetGoogle Scholar
  24. 24.
    D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea, New York, 1956.Google Scholar
  25. 25.
    M.W. Hirsch, Immersions of manifolds, Trans.Amer. Math. Soc. 93 (1959), 242–276.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    ———, On imbedding differentiate manifolds in euclidean space, Ann. Math. 73 (1961), 566–571.MATHCrossRefGoogle Scholar
  27. 27.
    ———, Differential Topology, Springer-Verlag, New York, 1976.MATHGoogle Scholar
  28. 28.
    ———, Reminiscences of Chicago in the Fifties, The Halmos Birthday Volume (J. Ewing, ed.), Springer-Verlag, New York, 1991.Google Scholar
  29. 29.
    M.W. Hirsch and S. Smale, On involutions of the 3-sphere, Amer. J. Math. 81 (1959), 893–900.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    J.F.P. Hudson, Piecewise Linear Topology, Benjamin, New York, 1969.MATHGoogle Scholar
  31. 31.
    C. Jordan, Sur les déformations des surfaces, J. Math. Pures Appl. (2) 11 (1866), 105–109.Google Scholar
  32. 32.
    M. Kervaire, A manifold which does not admit any differentiate structure, Comment. Math. Helv. 34 (1960), 257–270.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    ———, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31–42.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    M. Kervaire and J. Milnor, Groups of homotopy spheres, I, Ann. Math. 77 (1963), 504–537.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    R.C. Kirby and L. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations, Annals of Mathematics Studies Vol. 88, Princeton University Press and Tokyo University Press, Princeton, NJ, 1977.MATHGoogle Scholar
  36. 36.
    R. Lashof, Lees’ immersion theorem and the triangulation of manifolds, Bull. Amer. Math. Soc. 75 (1969), 535–538.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    J. Lees, Immersions and surgeries on manifolds, Bull. Amer. Math. Soc. 75 (1969), 529–534.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    S.D. Liao, On the theory of obstructions of fiber bundles, Ann. Math. 360 (1954), 146–191.CrossRefGoogle Scholar
  39. 39.
    E. Lima, On the local triviality of the restriction map for embeddings, Comment. Math. Helv. 38 (1964), 163–164.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    W.S. Massey, On the cohomology ring of a sphere bundle, J. Math. Mechanics 7 (1958), 265–290.MATHMathSciNetGoogle Scholar
  41. 41.
    B. Mazur, Relative neighborhoods and the theorems of Smale, Ann. Math. 77 (1936), 232–249.CrossRefMathSciNetGoogle Scholar
  42. 42.
    J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. Math. 64 (1956), 395–405.CrossRefMathSciNetGoogle Scholar
  43. 43.
    ———, Differentiate manifolds which are homotopy spheres, Mimeographed, Princeton University, 1958 or 1959.Google Scholar
  44. 44.
    ———, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    A.F. Möbius, Theorie der elementaren Verwandtschaft, Leipziger Sitzungsberichte math.-phys. Classe 15 (1869), also in Werke, Bd. 2.Google Scholar
  46. 46.
    M. Morse, The existence of polar nondegenerate functions on differentiable manifolds, Ann. Math. 71 (1960), 352–383.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    R.S. Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960), 305–312.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    A. Phillips, Submersions of open manifolds, Topology 6 (1966), 171–206.CrossRefGoogle Scholar
  49. 49.
    ———, Turning a sphere inside out, Sci. Amer. (1966) 223, May, 112–120.CrossRefGoogle Scholar
  50. 50.
    V. Poenaru, Sur la théorie des immersions, Topology 1 (1962), 81–100.MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    H. Poincaré, Cinquième complément à F Analysis Situs, Rend. Cire. Mat. Palermo 18 (1904), 45–110.MATHCrossRefGoogle Scholar
  52. 52.
    Jean-Claude Pont, La topologie algébrique: des origines à Poincaré, Presses Universitaires de France, Paris, 1974.MATHGoogle Scholar
  53. 53.
    L. Siebenmann, Topological manifolds, Proceedings of the International Congress of Mathematicians in Nice, September 1970 (Paris 6e), Vol. 2, Gauthiers-Villars, Paris (1971) pp. 133–163.Google Scholar
  54. 54.
    ———, Classification of sliced manifold structures, Appendix A, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations Princeton University Press and Tokyo University Press, Princeton, NJ, 1977; Ann. Math.Study 88, pp. 256–263.Google Scholar
  55. 55.
    ———, Topological manifolds, Foundational Essays on Topological Manifolds Smoothings, and Triangulations, Vol. 88, Princeton University Press and Tokyo University Press, Princeton, NJ, 1977; Ann. Math. Study 88, pp. 307–337.Google Scholar
  56. 56.
    S. Smale, A note on open maps, Proc. Amer. Math. Soc. 8 (1957), 391–393.MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    ———, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604–610.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    ———, The classification of immersions of spheres in euclidean spaces, Ann. Math. 69 (1959), 327–344.MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    ———, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626.MATHMathSciNetGoogle Scholar
  60. 60.
    ———, The generalized Poincaré conjecture in higher dimensions, Bull. Amer.Math. Soc. 66 (1960), 373–375.MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    ———, Morse inequalities for a dynamical system, Bull.Amer. Math. Soc. 66 (1960), 43–49.MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    ———, Generalized Poincaré conjecture in dimensions greater than four, Ann.Math. 74 (1961), 391–406.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    ———, On the structure of 5-manifolds, Ann. Math. 75 (1962), 38–46.MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    ———, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399.MATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    ———, Regular curves on Riemannian manifolds, Trans.Amer. Math. Soc. 87 (1968), 492–512.CrossRefMathSciNetGoogle Scholar
  66. 66.
    .S. Smale, On how I got started in dynamical systems, The Mathematics of Time, Springer-Verlag, New York, 1980, pp. 147–151.Google Scholar
  67. 67.
    ———, The story of the higher dimensional Poincaré conjecture (what actually happened on the beaches of Rio), Math. Intelligencer 12, No. 2 (1990), 44–51.MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    J. Stallings, Lectures on polyhedral topology, Technical report, Tata Institute of Fundamental Research, Bombay, 1967, Notes by G. Ananada Swarup.Google Scholar
  69. 69.
    R. Thom, La classifications des immersions, Seminaire Bourbaki, Exposé 157, 1957, 58 (mineographed).Google Scholar
  70. 70.
    ———, Des variétés triangulées aux variétés différentiables, Proceedings of the International Congress of Mathematicians1962 (J.A. Todd, ed.), Cambridge University Press, Cambridge, 1963, pp. 248–255.Google Scholar
  71. 71.
    ———, Les classes charactèristiques de Pontryagin des variétés triangulés, Symposium Internacional de Topologia Algebraica (Mexico City), Universidad Nacional Autonomia, pp. 54–67.Google Scholar
  72. 72.
    C.T.C. Wall, Classification of (n-l)-connected 2n-manifolds, Ann. Math. 75 (1962), 163–189MATHCrossRefGoogle Scholar
  73. 73.
    H. Weyl, Über die Idee der Riemannschen Flächen, B.G. Teubner Verlagsgesellschaft, Stuttgart 1973. Translated as The Concept of a Riemann Surface, Addison-Wesley, New York, 1955.Google Scholar
  74. 74.
    J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. 45 (1939), 243–327.CrossRefMathSciNetGoogle Scholar
  75. 75.
    ———, Simple homotopy types, Amer. J. Math. 72 (1940), 1–57.CrossRefMathSciNetGoogle Scholar
  76. 76.
    H. Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276–284.MATHMathSciNetGoogle Scholar
  77. 77.
    ———, The self-intersections of a smooth n-manifold in (2n — l)-space, Ann. Math. 45 (1944), 220–246.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    ———, The singularities of a smooth n-manifold in (2n — l)-space, Ann. Math. 45 (1944), 247–293.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Morris W. Hirsch

There are no affiliations available

Personalised recommendations