Skip to main content

Auditory Perception

  • Chapter
Human Psychophysics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 3))

Abstract

Most of the material covered in the previous four chapters has described the sensitivity of human listeners to the basic physical variables of sound responsible for hearing. The data and theories resulting from this work have defined both the form of the auditory code for sound and some of the mechanisms responsible for generating that code. However, if we are to determine the sources of the sounds in our world, we need to know more than just the sensitivity of the auditory system to the frequency, intensity, and time/phase characteristics of sound. In the past decade, there has been an emerging realization that processing the complex sounds that make up our everyday lives is not always predictable from what is known about a listener’s sensitivity to the basic properties of sound and that, most likely, there are unifying themes that can be applied to the perception of all sounds, including speech and music (Yost and Watson 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assmann PF, Summerfield Q (1990) Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies. J Acoust Soc Am 88:680–697.

    PubMed  CAS  Google Scholar 

  • Bacon SP, Smith MA (1991) Spectral, intensive, and temporal factors influencing overshoot. Quart J Exp Psychol 43A: 373–399.

    Google Scholar 

  • Barsz K (1991) Auditory pattern perception: The effect of tone location on the discrimination of tonal sequences. Percept Psychophys 50:290–296.

    PubMed  CAS  Google Scholar 

  • Bashford JA, Warren RM (1987) Multiple phonemic restorations follow the rules for auditory induction. Percept Psychophys 42:114–121.

    PubMed  Google Scholar 

  • Beauvois MW, Meddis R (1991) A computer model of auditory stream segregation. Quart J Exp Psychol 43A:517–541.

    Google Scholar 

  • Beerends JG, Houtsma AJM (1986) Pitch identification of simultaneous dichotic two-tone complexes. J Acoust Soc Am 80:1048–1057.

    PubMed  CAS  Google Scholar 

  • Beerends JG, Houtsma AJM (1989) Pitch identification of simultaneous diotic and dichotic two-tone complexes. J Acoust Soc Am 85:813–819.

    PubMed  CAS  Google Scholar 

  • Berg BG (1990) Observer efficiency and weights in a multiple observation task. J Acoust Soc Am 88:149–158.

    PubMed  CAS  Google Scholar 

  • Bernstein LR, Green DM (1988) Detection of changes in spectral shape: Uniform vs. non-uniform background spectra. Hear Res 34:157–166.

    PubMed  CAS  Google Scholar 

  • Boring EG (1942) Sensation and Perception in the History of Experimental Psychology. New York: Appleton-Century.

    Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bregman AS, Campbell J (1971) Primary auditory stream segregation and perception of order in rapid sequences of tones. J Exp Psychol 89:244–249.

    PubMed  CAS  Google Scholar 

  • Bregman AS, Doehring P (1984) Fusion of simultaneous tonal glides: The role of parallelness and simple frequency relations. Percept Psychophys 36:251–256.

    PubMed  CAS  Google Scholar 

  • Bregman AS, Pinker S (1978) Auditory streaming and the building of timbre. Canad J Psychol 32:19–31.

    PubMed  CAS  Google Scholar 

  • Bregman AS, Abramson J, Doehring P, Darwin CJ (1985) Spectral integration based upon common amplitude modulation. Percept Psychophys 37:483–493.

    PubMed  CAS  Google Scholar 

  • Bregman AS, Levitan R, Liao C (1990) Fusion of auditory components: Effects of the frequency of amplitude modulation. Percept Psychophys 47:68–73.

    PubMed  CAS  Google Scholar 

  • Bregman AS, Liao C, Levitan R (1990) Auditory grouping based on fundamental frequency and formant peak frequency. Canad J Psychol 44:400–413.

    PubMed  CAS  Google Scholar 

  • Broadbent DE, Ladefoged P (1957) On the fusion of sounds reaching different sense organs. J Acoust Soc Am 29:708–710.

    Google Scholar 

  • Brokx JPL, Nooteboom SG (1982) Intonation and the perceptual separation of simultaneous voices. J Phon 10:23–36.

    Google Scholar 

  • Buell TN, Hafter ER (1991) Combination of binaural information across frequency bands. J Acoust Soc Am 90:1894–1900.

    PubMed  CAS  Google Scholar 

  • Carlyon RP (1989) Changes in the masked thresholds of brief tones produced by prior bursts of noise. Hear Res 41:223–236.

    PubMed  CAS  Google Scholar 

  • Carlyon RP (1991) Discriminating between coherent and incoherent frequency modulation of complex tones. J Acoust Soc Am 89:329–340.

    PubMed  CAS  Google Scholar 

  • Carlyon RP, White LJ (1992) Effect of signal frequency and masker level on the frequency regions responsible for the overshoot effect. J Acoust Soc Am 91:1034–1041.

    PubMed  CAS  Google Scholar 

  • Chalikia MH, Bregman AS (1989) The perceptual segregation of simultaneous auditory signals: Pulse train segregation and vowel segregation. Percept Psychophys 46:487–496.

    PubMed  CAS  Google Scholar 

  • Champlin CA, McFadden D (1989) Reductions in overshoot following intense sound exposures. J Acoust Soc Am 85:2005–2011.

    PubMed  CAS  Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979.

    Google Scholar 

  • Ciocca V, Bregman AS (1987) Perceived continuity of gliding and steady-state tones through interrupting noise. Percept Psychophys 42:476–484.

    PubMed  CAS  Google Scholar 

  • Cohen MF, Schubert ED (1987) The effect of cross-spectrum correlation on the detectability of a noise band. J Acoust Soc Am 81:721–723.

    PubMed  CAS  Google Scholar 

  • Cramer EM, Huggins WH (1958) Creation of pitch through binaural interaction. J Acoust Soc Am 30:413–417.

    Google Scholar 

  • Creutzfeldt 0, Hellweg FC, Schreiner C (1980) Thalamocortical transformation of responses to complex auditory stimuli. Exp Brain Res 39:87–104.

    PubMed  CAS  Google Scholar 

  • Dannenbring GL, Bregman AS (1976) Stream segregation and the illusion of overlap. J Exp Psychol: Human Percept Perf 2:544–555.

    CAS  Google Scholar 

  • Dannenbring GL, Bregman AS (1978) Streaming vs. fusion of sinusoidal components of complex waves. Percept Psychophys 24:369–376.

    PubMed  CAS  Google Scholar 

  • Darwin CJ (1981) Perceptual grouping of speech components differing in fundamental frequency and onset time. Quart J Exp Psychol 33A:185–207.

    Google Scholar 

  • Darwin CJ (1984) Perceiving vowels in the presence of another sound: Constraints on formant perception. J Acoust Soc Am 76:1636–1647.

    PubMed  CAS  Google Scholar 

  • Darwin CJ, Ciocca V (1992) Grouping in pitch perception: Effects of onset asynchrony and ear of presentation of a mistuned component. J Acoust Soc Am 91: 3381–3391.

    PubMed  CAS  Google Scholar 

  • Darwin CJ, Gardner RB (1986) Mistuning a harmonic of a vowel: Grouping and phase effects on vowel quality. J Acoust Soc Am 79:838–845.

    PubMed  CAS  Google Scholar 

  • Darwin CJ, Sutherland NS (1984) Grouping frequency components of vowels: When is a harmonic not a harmonic? Quart J Exp Psych 36A: 193–208.

    Google Scholar 

  • de Boer E (1976) On the“residue” and auditory pitch perception. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Volume V/1. New York: Springer-Verlag, pp. 479–583.

    Google Scholar 

  • Demany L, Semai C (1990) The effect of vibrato on the recognition of masked vowels. Percept Psychophys 48:436–444.

    PubMed  CAS  Google Scholar 

  • Deutsch D (1980) Ear dominance and sequential interactions. J Acoust Soc Am 67: 220–228.

    PubMed  CAS  Google Scholar 

  • Dye RH (1990) The combination of interaural information across frequencies: Lateralization on the basis of interaural delay. J Acoust Soc Am 88:2159–2170.

    PubMed  Google Scholar 

  • Fasti H, Hesse A, Schorer E, Urbas J, Müller-Preuss P (1986) Searching for neural correlates of the hearing sensation fluctuation strength in the auditory cortex of squirrel monkeys. Hear Res 23:199–203.

    Google Scholar 

  • Gardner RB, Darwin CJ (1986) Grouping vowel harmonics by frequency modulation: Absence of effects on phonemic categorization. Percept Psychophys 40:183–187.

    PubMed  CAS  Google Scholar 

  • Gardner RB, Gaskill SA, Darwin CJ (1989) Perceptual grouping of formants with static and dynamic differences in fundamental frequency. J Acoust Soc Am 85: 1329–1337.

    Google Scholar 

  • Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 54:1496–1516.

    PubMed  CAS  Google Scholar 

  • Green DM (1988) Profile Analysis. New York: Oxford Press.

    Google Scholar 

  • Green DM, Yost WA (1975) Binaural analysis. In: Keidel WD, Neff WD (eds) Hand-book of Sensory Physiology, Volume V/2. New York: Springer-Verlag, pp. 461–480.

    Google Scholar 

  • Hall JW III, Grose JH (1990) Comodulation masking release and auditory grouping. J Acoust Soc Am 88:119–125.

    PubMed  Google Scholar 

  • Hall JW III, Grose JH (1991) Some effects of auditory grouping factors on modulation detection interference (MDI). J Acoust Soc Am 90:3028–3035.

    PubMed  Google Scholar 

  • Handel S (1989) Listening: An Introduction to the Perception of Auditory Events. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hartmann WM (1988) Pitch perception and the organization and integration of auditory entities. In: Edelman GW, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 623–645.

    Google Scholar 

  • Hartmann WM, Me Adams S, Smith BK (1990) Hearing a mistuned harmonie in an otherwise periodic complex tone. J Acoust Soc Am 88:1712–1724.

    PubMed  CAS  Google Scholar 

  • Helmholtz H (1885) On the Sensations of Tone as a Physiological for the Theory of Music. New York: Dover Press (1954).

    Google Scholar 

  • Hirsh IJ (1988) Auditory perception and speech. In: Atkinson RC, Herrnstein RJ, Lindzey G, Luce RD (eds) Steven’s Handbook of Experimental Psychology, Volume 1. New York: John Wiley and Sons, pp. 377–408.

    Google Scholar 

  • Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51:1885.

    PubMed  CAS  Google Scholar 

  • Houtgast T, Steeneken HJM, Plomp R (1980) Predicting speech intelligibility in rooms from the modulation transfer function. I. General room acoustics. Acustica 46:60–72.

    Google Scholar 

  • Houtsma AJM, Goldstein JL (1972) The central origin of the pitch of complex tones evidence from musical interval recognition. J Acoust Soc Am 51:520–529.

    Google Scholar 

  • Judd T (1979) Comments on Deutsch’s musical scale illusion. Percept Psychophys 26:85–92.

    PubMed  CAS  Google Scholar 

  • Kay RH (1982) Hearing of modulation in sounds. Physiologic Rev 62:894–975.

    CAS  Google Scholar 

  • Kidd GR, Watson CS (1993) The proportion-of-the-total-duration rule for frequency resolution in ten-tone patterns. J Acoust Soc Am (in press).

    Google Scholar 

  • Kidd GR, Watson CS (1992b) The proportion-of-the-total-duration (PTD) rule for holds for duration discrimination. J Acoust Soc Am 92:2318.

    Google Scholar 

  • Kim DO, Sirianni JG, Chang, SO (1990) Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized decerebrate cats to AM and pure tones: Analysis with autocorrelation/power spectrum. Hear Res 45:95–113.

    PubMed  CAS  Google Scholar 

  • Kubovy M (1987) Concurrent pitch segregation. In: Yost WA, Watson CS (eds) Auditory Processing of Complex Sounds. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 299–314.

    Google Scholar 

  • Kubovy M, Daniel JE (1983) Pitch segregation by interaural phase momentary amplitude disparity and by monaural phase. J Audio Eng Soc 31:630–634.

    Google Scholar 

  • Malsburg Ch von der, Schneider W (1986) A neural cocktail-party processor. Biol Cybernet 54:29–40.

    Google Scholar 

  • Marin CMH, McAdams S (1991) Segregation of concurrent sounds. II: Effects of spectral envelope tracing, frequency modulation coherence, and frequency modulation width. J Acoust Soc Am 89:341–351.

    PubMed  CAS  Google Scholar 

  • McAdams S (1984) Spectral fusion, spectral parsing, and the formation of auditory images. Stanford, CA: Stanford University (unpublished dissertation).

    Google Scholar 

  • McAdams S (1989) Segregation of concurrent sounds. I: Effects of frequency modulation coherence. J Acoust Soc Am 86:2148–2159.

    PubMed  CAS  Google Scholar 

  • McFadden D (1975) Masking and the binaural system. In: Tower DB (ed) The Nervous System, Volume 3. New York: Raven Press, pp. 137–146.

    Google Scholar 

  • McFadden D (1987) Comodulation detection differences using noise-band signals. J Acoust Soc Am 81:1519–1527.

    PubMed  CAS  Google Scholar 

  • McFadden D (1988) Failure of a missing fundamental complex to interact with masked and unmasked pure tones at its fundamental frequency. Hear Res 32:23–39.

    PubMed  CAS  Google Scholar 

  • McFadden D (1989) Spectral differences in the ability of temporal gaps to reset the mechanisms underlying overshoot. J Acoust Soc Am 85:254–261.

    PubMed  CAS  Google Scholar 

  • McFadden D, Wright BA (1992) Temporal decline of masking and comodulation masking release. J Acoust Soc Am 92:144–156.

    PubMed  CAS  Google Scholar 

  • Meddis R, Hewitt M J (1992) Modeling the identification of concurrent vowels with different fundamental frequencies. J Acoust Soc Am 91:233–245.

    PubMed  CAS  Google Scholar 

  • Miller GA, Heise GA (1950) The trill threshold. J Acoust Soc Am 22:637–638.

    Google Scholar 

  • Miller JD (1984) Auditory processing of the acoustic patterns of speech. Arch Otolaryngol 110:154–159.

    PubMed  CAS  Google Scholar 

  • Moller AR (1976) Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus. Acta Physiol Scand 98:157–167.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1989) An Introduction to the Psychology of Hearing, Third Edition. New York: Academic Press.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1990) Frequency discrimination of complex tones with overlapping and non overlapping harmonics. J Acoust Soc Am 87:2163–2177.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Peters RW, Glasberg BR (1985) Thresholds for the detection of inharmonicity in complex tones. J Acoust Soc Am 77:1861–1867.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Schooneveldt GP (1990) Across-channel masking and comodulation masking release. J Acoust Soc Am 87:1683–1694.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Gaunt T, Child T (1991) Across-channel masking of changes in modulation depth for amplitude- and frequency-modulated signals. Quart J Exp Psych 43A:327–347.

    Google Scholar 

  • Patterson RD (1987) A pulse ribbon model of monaural phase perception. J Acoust Soc Am 82:1560–1586.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Robinson K, Holdsworth J, McKeown, Zhang C, Allerhand M (1992) Complex sounds and auditory images. In: Cazals Y, Demany L, Horner L (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 429–443.

    Google Scholar 

  • Plomp R (1976) Aspects of Tone Sensation. New York: Academic Press.

    Google Scholar 

  • Plomp R (1983) The role of modulation in hearing. In: Klinke R, Hartmann R (eds) Hearing: Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 270–275.

    Google Scholar 

  • Plomp R, Mimpen AM (1981) Effect of the orientation of the speaker’s head and the azimuth of a noise source on the speech reception threshold for sentences. Acustica 48:325–328.

    Google Scholar 

  • Pollack I (1975) Auditory informational masking. J Acoust Soc Am, Suppl 1 57: S5.

    Google Scholar 

  • Price R (1955) A note on the envelope and phase-modulated components of narrow-band Gaussian noise. IRE Trans Inf Theory IT1:9–13.

    Google Scholar 

  • Rasch RA (1978) The perception of simultaneous notes such as in polyphonic music. Acustica 40:21–33

    Google Scholar 

  • Rayleigh L (1877) The Theory of Sound. New York: Dover Press, English Edition (1945)

    Google Scholar 

  • Rees A, Palmer AR (1989) Neuronal responses to amplitude-modulated and puretone stimuli in the guinea pig inferior colliculus, and their modification by broad-band noise. J Acoust Soc Am 85:1978–1994.

    PubMed  CAS  Google Scholar 

  • Rice SO (1954) Mathematical analysis of random noise. In Wax N (ed) Selected Papers on Noise and Stochastic Processes. New York: Dover Press, pp. 133–294.

    Google Scholar 

  • Richards VM (1987) Monaural envelope correlation perception. J Acoust Soc Am 82:1621–1630.

    PubMed  CAS  Google Scholar 

  • Saberi K, Dostal L, Sadralodabai T, Bull V, Perrott DR (1991) Free-field release from masking. J Acoust Soc Am 90:1355–1370.

    PubMed  CAS  Google Scholar 

  • Scheffers MTM (1982) The role of pitch in the perceptual separation of simultaneous vowels II. IPO Annual Prog Rep 17:41–45.

    Google Scholar 

  • Schreiner CE, Langer G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823–1840.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Urbas JV (1986) Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF). Hear Res 21:227–241.

    PubMed  CAS  Google Scholar 

  • Sheft S, Yost WA (1989a) Detection and recognition of amplitude modulation with tonal carriers. J Acoust Soc Am, Suppl 1 85:S121.

    Google Scholar 

  • Sheft S, Yost WA (1989b) Spectral fusion based on coherence of amplitude modulation. J Acoust Soc Am, Suppl 1 86:S10–S11.

    Google Scholar 

  • Sheft S, Yost WA (1990) Cued envelope-correlation detection. J Acoust Soc Am, Suppl 1 88:S145.

    Google Scholar 

  • Sheft S, Yost WA (1992a) Spectral transposition of envelope modulation. J Acoust Soc Am 91:2333.

    Google Scholar 

  • Sheft S, Yost WA (1992b) Concurrent pitch segregation based on AM. J Acoust Soc Am 92:2361.

    Google Scholar 

  • Singh PG (1987) Perceptual organization of complex-tone sequences: A tradeoff between pitch and timbre? J Acoust Soc Am 82:886–899.

    PubMed  CAS  Google Scholar 

  • Slaney M, Lyon R (1991) Apple Hearing Demo Reel. Apple Technical Report #25. Cupertino, CA: Apple Computer, Inc.

    Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses in single auditory-nerve fibers. Biol Cybernet 17:169–182.

    CAS  Google Scholar 

  • Steiger H, Bregman AS (1982) Competition among auditory streaming, dichotic fusion, and diotic fusion. Percept Psychophys 32:153–162.

    PubMed  CAS  Google Scholar 

  • Stellmack MA, Dye RH (1993) The combination of interaural information across frequencies: The effects of number and spacing of components, onset asynchrony, and harmonicity. J Acoust Soc Am 93:2933–2947.

    PubMed  CAS  Google Scholar 

  • Summerfield Q, Assmann PF (1989) Auditory enhancement and the perception of concurrent vowels. Percept Psychophys 45:529–536.

    PubMed  CAS  Google Scholar 

  • Summerfield Q, Assmann PF (1991) Perception of concurrent vowel: Effects of harmonic misalignment and pitch-period asynchrony. J Acoust Soc Am 89:1364–1377.

    PubMed  CAS  Google Scholar 

  • Summerfield Q, Sidwell A, Nelson T (1987) Auditory enhancement of changes in spectral amplitude. J Acoust Soc Am 81:700–708.

    PubMed  CAS  Google Scholar 

  • Terhardt E, Stoll G, Seewann, M (1982) Pitch of complex signals according to virtual pitch theory: Test, examples, and predictions. J Acoust Soc Am 71:671–678.

    Google Scholar 

  • Trahiotis C, Bernstein LR (1990) Detectability of interaural delays over select spectral regions: Effects of flanking noise. J Acoust Soc Am 87:810–813.

    PubMed  CAS  Google Scholar 

  • van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. Eindhoven: Eindhoven Universitat Technologie (unpublished dissertation).

    Google Scholar 

  • van Noorden LPAS (1977) Minimum differences of level and frequency for perceptual fission of tone sequences ABAB. J Acoust Soc Am 61:1041–1045.

    PubMed  Google Scholar 

  • Verschuure J (1981) Pulsation patterns and nonlinearity of auditory tuning. I. Psychophysical results. Acustica 49:288–295.

    Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380.

    PubMed  CAS  Google Scholar 

  • Viemeister NF (1980) Adaptation of masking. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioral Studies in Hearing. Delft, the Netherlands: Delft University Press, pp. 190–198.

    Google Scholar 

  • Viemeister NF, Bacon SP (1982) Forward masking by enhanced components in harmonic complexes. J Acoust Soc Am 71:1502–1507.

    PubMed  CAS  Google Scholar 

  • Wakefield GH, Edwards B (1987) Discrimination of envelope phase disparity. J Acoust Soc Am, Suppl 1 82:S41.

    Google Scholar 

  • Wakefield GH, Edwards B (1989) Cross-spectral envelope phase discrimination for FM signals. J Acoust Soc Am, Suppl 1 85:S122.

    Google Scholar 

  • Warren RM, Obusek CJ, Ackroff JM (1972) Auditory induction: Perceptual synthesis of absent sounds. Science 176:1149–1151.

    PubMed  CAS  Google Scholar 

  • Watson CS (1976) Auditory pattern discrimination. In: Hirsh SK, Eldredge DH, Hirsh IJ, Silverman SR (eds) Hearing and Davis. St. Louis, MO: Washington University Press, pp. 175–189.

    Google Scholar 

  • Watson CS, Kelly WJ (1981) The role of stimulus uncertainty in the discrimination of auditory patterns. In: Getty DJ, Howard JH (eds) Auditory and Visual Pattern Recognition. Hillsdale NJ: Lawrence Erlbaum Associates, pp. 37–59.

    Google Scholar 

  • Watson CS, Wroton HW, Kelly WJ, Benbassat CA (1975) Factors in the discrimination of tonal patterns. I. Component frequency, temporal position, and silent intervals. J Acoust Soc Am 57:1175–1185.

    PubMed  CAS  Google Scholar 

  • Wightman FL (1973a) Pitch and stimulus fine structure. J Acoust Soc Am 54:397–406.

    PubMed  CAS  Google Scholar 

  • Wightman FL (1973b) The pattern-transformation model of pitch. J Acoust Soc Am 54:407–417.

    PubMed  CAS  Google Scholar 

  • Wilson JP (1970) An auditory afterimage. In: Plomp R, Smoorenburg G (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden, The Netherlands: AW Sijthoff, pp. 303–312.

    Google Scholar 

  • Woods WS, Colburn HS (1993) Test of a model of auditory object formation using intensity and ITD discrimination. J Acoust Soc Am (in press).

    Google Scholar 

  • Wright BA (1990) Comodulation detection differences with multiple signal bands. J Acoust Soc Am 87:292–303.

    PubMed  CAS  Google Scholar 

  • Yost WA (1991) Auditory image perception and analysis: The basis for hearing. Hear Res 56:8–18.

    PubMed  CAS  Google Scholar 

  • Yost WA, Sheft S (1989) Across critical band processing of amplitude-modulated tones. J Acoust Soc Am 85:848–857.

    PubMed  CAS  Google Scholar 

  • Yost WA, Watson CS (1987) Auditory Processing of Complex Sounds. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Yost WA, Harder PJ, Dye RH (1987) Complex spectral patterns with interaural differences: Dichotic pitch and the “central spectrum.” In: Yost WA, Watson CS (eds) Auditory Processing of Complex Sounds. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 190–201.

    Google Scholar 

  • Yost WA, Sheft S, Opie, J (1989) Modulation interference in the detection and discrimination of amplitude modulation. J Acoust Soc Am 86:2138–2147.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1964) Negative afterimage in hearing. J Acoust Soc Am 36:2413–2415.

    Google Scholar 

  • Zwicker E (1965) Temporal effects in simultaneous masking an loudness. J Acoust Soc Am 38:132–141.

    PubMed  CAS  Google Scholar 

  • Zwicker UT (1984) Auditory recognition of diotic and dichotic vowel pairs. Speech Commun 3:265–277.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Yost, W.A., Sheft, S. (1993). Auditory Perception. In: Yost, W.A., Popper, A.N., Fay, R.R. (eds) Human Psychophysics. Springer Handbook of Auditory Research, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2728-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2728-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7644-9

  • Online ISBN: 978-1-4612-2728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics