Advertisement

Regulation of Human Cytotrophoblast Invasion

  • Kathryn E. Bass
  • Iris Roth
  • Caroline H. Damsky
  • Susan J. Fisher
Part of the Serono Symposia, USA book series (SERONOSYMP)

Abstract

Human cytotrophoblast invasion of the uterus is the result of an unusual differentiation process in which polarized epithelial cells, anchored to the chorionic villus basement membrane, become detached, aggregate into multilayered columns of nonpolarized cells, and rapidly penetrate the endometrium, the first third of the myometrium, and the associated spiral arterioles (Fig. 12.1). This process continues through the first trimester, peaks during the 12th week of pregnancy, and declines rapidly thereafter (1–4). The result is formation of the hemochorial placenta in which the fetal trophoblast cells are constantly bathed by maternal blood.

Keywords

Human Placenta Uterine Wall Trophoblast Invasion Human Trophoblast Invasive Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brosens I, Dixon HG. Anatomy of the maternal side of the placenta. Br J Obstet Gynaecol 1966;73:357–363.CrossRefGoogle Scholar
  2. 2.
    Boyd JD, Hamilton WJ. The human placenta. Cambridge: Heffer and Sons, 1970.Google Scholar
  3. 3.
    Ramsey EM, Houston ML, Harris JWS. Interactions of the trophoblast and maternal tissues in three closely related primate species. Am J Obstet Gynecol 1976;124:647–652.PubMedGoogle Scholar
  4. 4.
    Tuttle SE, O’Toole RV, O’Shaughnessy RW, Zuspan FP. Immunochemical evaluation of human placental implantation: an initial study. Am J Obstet Gynecol 1985;153:239–244.PubMedGoogle Scholar
  5. 5.
    Liotta LA, Rao CN, Wewer UM. Biochemical interactions of tumor cells with the basement membrane. Annu Rev Biochem 1986;55:1037–1058.PubMedCrossRefGoogle Scholar
  6. 6.
    Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 1991;51(18 suppl):5054s–5059s.PubMedGoogle Scholar
  7. 7.
    Alexander CM, Werb Z. Proteinases and extracellular matrix remodeling. Curr Opin Cell Biol 1989;1:974–982.PubMedCrossRefGoogle Scholar
  8. 8.
    Matrisian L. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 1990;6:121–125.PubMedCrossRefGoogle Scholar
  9. 9.
    Hendrix MJ, Seftor EA, Grogan TM, et al. Expression of type IV collagenase correlates with the invasion of human lymphoblastoid cell lines and pathogenesis in SCID mice. Mol Cell Probes 1992;6:59–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF. Purification, characterization and in vitro differentiation of cytotrophoblast from human term placentae. Endocrinology 1986;118:1567–1582.PubMedCrossRefGoogle Scholar
  11. 11.
    Charbonneau H, Tonks NK, Kumar S, et al. Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci USA 1989;86:5252–5256.PubMedCrossRefGoogle Scholar
  12. 12.
    Fisher SJ, Cui T, Zhang L, et al. Adhesive and degradative properties of human placental cytotrophoblast cells in vitro. J Cell Biol 1989;109:891–902.PubMedCrossRefGoogle Scholar
  13. 13.
    Queenan J, Kao L, Arboleda CE, et al. Regulation of urokinase-type plasminogen activator production by cultured human cytotrophoblasts. J Biol Chem 1987;262:10903–10906.PubMedGoogle Scholar
  14. 14.
    Librach C, Werb Z, Fitzgerald ML, et al. 92-kd type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol 1991;112:437–449.CrossRefGoogle Scholar
  15. 15.
    Damsky CH, Fitzgerald ML, Fisher SJ. Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J Clin Invest 1992;89:210–222.PubMedCrossRefGoogle Scholar
  16. 16.
    Roberts J, Taylor RN, Friedman SA, Goldfien A. New developments in pre-eclampsia. In: Dunlop W, ed. Fetal medical review. London: Edward Arnold, 1990.Google Scholar
  17. 17.
    de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991;174:1209–1220. PubMedCrossRefGoogle Scholar
  18. 18.
    Zlotnik A, Moore KW. Interleukin 10. Cytokine 1991;3:366–371.PubMedCrossRefGoogle Scholar
  19. 19.
    Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990;248:220–223.PubMedCrossRefGoogle Scholar
  20. 20.
    Ellis SA, Sargent IL, Redman CW, McMichael AJ. Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology 1986;59:595–601.PubMedGoogle Scholar
  21. 21.
    Ellis SA, Palmer MS, McMichael AJ. Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA class I molecule. J Immunol 1990;144:731–735.PubMedGoogle Scholar
  22. 22.
    Ishitani A, Geraghty DE. Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc Natl Acad Sci USA 1992;89:3947–3951.PubMedCrossRefGoogle Scholar
  23. 23.
    Koller BH, Geraghty DE, DeMars R, Duvick L, Rich SS, Orr HT. Chromosomal organization of the human major histocompatibility complex class I gene family. J Exp Med 1989;169:469–480.PubMedCrossRefGoogle Scholar
  24. 24.
    Geraghty DE, Koller BH, Orr HT. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc Natl Acad Sci USA 1987:84:9145–9155.PubMedCrossRefGoogle Scholar
  25. 25.
    Starkey PM, Sargent IL, Redman CW. Cell populations in human early pregnancy decidua: characterization and isolation of large granular lymphocytes by flow cytometry. Immunology 1988;65:129–134.PubMedGoogle Scholar
  26. 26.
    Kovats S, Librach C, Fisch P, et al. Expression and possible function of the HLA-G α chain in human cytotrophoblasts. In: Chaouat J, Mowbray J, eds. Cellular and molecular biology of the materno-fetal relationship; vol 212. New York: John Libbey Eurotext Ltd, 1991:21–29.Google Scholar
  27. 27.
    Ladines-Llave CA, Maruo T, Manalo AS, Mochizuki M. Cytologic localization of epidermal growth factor and its receptor in developing human placenta varies over the course of pregnancy. Am J Obstet Gynecol 1991;165:1377–1382.PubMedGoogle Scholar
  28. 28.
    Mirlesse V, Alsat E, Fondacci C, Evain-Brion D. Epidermal growth factor receptors in cultured human trophoblast cells from first- and third-trimester placentas. Horm Res 1990;34:234–239.PubMedCrossRefGoogle Scholar
  29. 29.
    Hofmann GE, Scott RT, Bergh PA, Deligdisch L. Immunohistochemical localization of epidermal growth factor in human endometrium, decidua, and placenta. J Clin Endocrinol Metab 1991;73:882–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Kauma S, Matt D, Strom S, Eierman D, Turner T. Interleukin-lß (IL-1ß), HLA-DRα and transforming growth factor-ß (TGF-ß) expression in endometrium, placenta, and placental membranes. Am J Obstet Gynecol 1990;163:1430–1437.PubMedGoogle Scholar
  31. 31.
    Dungy LJ, Siddiqui TA, Khan S. Transforming growth factor-ß1 expression during placental development. Am J Obstet Gynecol 1991;165:853–857.PubMedGoogle Scholar
  32. 32.
    Wang C, Daimon M, Shen S, Engelmann GL, Dan J. Insulin-like growth factor-1 messenger ribonucleic acid in the developing human placenta and in term placenta of diabetics. Mol Endocrinol 1988;2:217–229.PubMedCrossRefGoogle Scholar
  33. 33.
    Ohlsson R, Larsson E, Nilsson O, Wahlstrom T, Sundstrom P. Blastocyst implantation precedes induction of insulin-like growth factor II gene expression in human trophoblasts. Development 1989;106:555–559.PubMedGoogle Scholar
  34. 34.
    Kauma SW, Aukerman SL, Eierman D, Turner T. Colony-stimulating factor-1 and c-fms expression in human endometrial tissues and placenta during the menstrual cycle and early pregnancy. J Clin Endocrinol Metabol 1991:73:746–751.CrossRefGoogle Scholar
  35. 35.
    Saji F, Azuma C, Kimura T, Koyama M, Ohashi K, Tanizawa O. Gene expression of macrophage colony-stimulating factor and its receptor in human placenta and decidua. Am J Reprod Immunol 1990;24:99–104.PubMedGoogle Scholar
  36. 36.
    Boehm KD, Kelley MF, Ilan J, Ilan J. The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta. Proc Natl Acad Sci USA 1989;86:656–660.PubMedCrossRefGoogle Scholar
  37. 37.
    Kameda T, Noboru M, Sawai K, et al. Production of interleukin-6 by normal human trophoblast. Placenta 1990;11:205–213.PubMedCrossRefGoogle Scholar
  38. 38.
    Nishino E, Matsuzaki N, Masuhiro K, et al. Trophoblast-derived interleukin-6 (IL-6) regulates human chorionic gonadotropin release through IL-6 receptor on human trophoblasts. J Clin Endocrinol Metab 1990;71:436–441.PubMedCrossRefGoogle Scholar
  39. 39.
    Pampfer S, Daiter E, Barad D, Pollard JW. Expression of the colony-stimulating factor-1 receptor (c-fms proto-oncogene product) in the human uterus and placenta. Biol Reprod 1992;46:48–57.PubMedCrossRefGoogle Scholar
  40. 40.
    Daiter E, Pampfer S, Yeung YG, Barad D, Stanley ER, Pollard JW. Expression of colony-stimulating factor-1 in the human uterus and placenta. J Clin Endocrinol Metab 1992;74:850–858.PubMedCrossRefGoogle Scholar
  41. Wilson EA, Jawad MJ, Vernon MW. Effect of epidermal growth factor on hormone secretion by term placenta in organ culture. Am J Obstet Gynecol 1984;579–580.Google Scholar
  42. 42.
    Maruo T, Matsuo H, Oishi T, Hayashi M, Nishino R, Mochizuki M. Induction of differentiated trophoblast function by epidermal growth factor: relation of immunohistochemically detected cellular epidermal growth factor receptor levels. J Clin Endocrinol Metab 1987;64:744–750.PubMedCrossRefGoogle Scholar
  43. 43.
    Morrish DW, Bhardwaj D, Paras MT. Transforming growth factor ßl inhibits placental differentiation and human chorionic gonadotropin and human placental lactogen secretion. Endocrinology 1991;129:22–26.PubMedCrossRefGoogle Scholar
  44. 44.
    Chirgwin J, Przybyla A, MacDonald R, Rutter W. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979;18:5294–5299.PubMedCrossRefGoogle Scholar
  45. 45.
    Rappolee DA, Mark D, Banda MJ, Werb Z. Wound macrophages express TGF-a and other growth factors in vivo. Analysis by mRNA phenotyping. Science 1988;24:708–712.Google Scholar
  46. 46.
    Rappolee DA, Brenner CA, Schultz R, Mark D, Werb Z. Developmental expression of PDGF, TGF-a, and TGF-ß genes in preimplantation mouse embryos. Science 1988;241:1823–1825.PubMedCrossRefGoogle Scholar
  47. 47.
    Rappolee DA, Mark D, Werb Z. A novel method for studying mRNA phenotypes in single or small numbers of cells. J Cell Biochem 1988;39:1–11.CrossRefGoogle Scholar
  48. 48.
    Fiorentino DF, Zlotnik A, Vieira P, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 1991;146:3444–3451.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc 1993

Authors and Affiliations

  • Kathryn E. Bass
  • Iris Roth
  • Caroline H. Damsky
  • Susan J. Fisher

There are no affiliations available

Personalised recommendations