Issues in the Application of High Order Schemes

  • David Gottlieb
Conference paper
Part of the ICASE/NASA LaRC Series book series (ICASE/NASA)

Abstract

We argue, in this paper, that the type of simulations to be carried out in the next decade will entail the use of high order schemes.

A discussion of some issues in the application of those schemes to time dependent problems are discussed. In particular we will review spectral shock capturing techniques and the asymptotic behavior of high order compact schemes.

Keywords

Entropy Vortex Convolution Tral Clarification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Abarbanel and D. Gottlieb, “Information content in spectral calculations”, in Progress and Supercomputing in Computational Fluid Dynamics, edited by E. Murman and S. Abarbanel, (1984), Birkhauser, pp. 345–356.Google Scholar
  2. [2]
    W. Cai, “Spectral methods for shock wave calculations”, Ph.D. thesis, Brown University 1989.Google Scholar
  3. [3]
    W. Cai, D. Gottlieb and A. Harten, “Cell averaging Chebyshev methods for hyperbolic problems”, Comput. and Math. with Appli. 1990.Google Scholar
  4. [4]
    W. Cai, D. Gottlieb and C. -W. Shu, “Essentially non-oscillatory spectral Fourier methods for shock wave calculations”, Math. Comput., V52, (1989), pp. 389–410.MathSciNetMATHGoogle Scholar
  5. [5]
    Mark H. Carpenter, David Gottlieb and Saul Abarbanel, “The stability of numerical boundary treatments for compact highorder finite difference schemes”, ICASE report 91-71, september 1991.Google Scholar
  6. [6]
    D. Gottlieb and S. Orszag, “Numerical analysis of spectral methods: theory and applications”, SIAM-CBMS, Philadephia, 1977.MATHGoogle Scholar
  7. [7]
    D. Gottlieb and E. Tadmor, “Recovering pointwise values of discontinuous data”, in Progress and Supercomputing in Computational Fluid Dynamics, editedGoogle Scholar
  8. [8]
    Gottlieb D., Gunzburger M., and Turkel E. “ON numerical boundary treatment of hyperbolic systems for finite difference and finite element methods” SIAM Journal on Numerical Analysis 19, 4 (1982).MathSciNetCrossRefGoogle Scholar
  9. [9]
    Gottlieb D. Shu, C.W., Solomonof A., Vandeven H. “On the Gibbs Phenomenon I” to appear in Applied Numerical Mathematics.Google Scholar
  10. [10]
    A. Harten, B. Engquist, S. Osher and S. Chakravarthy, “Uniformly high order accurate essentially non-oscillatory schemes, III”, J. Comput. Phys., V71, (1987), pp. 231–303.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    D. A. Kopriva, “A practical assessment of spectral accuracy for hyperbolic problems with discontinuities”, J. Sci. Comput., V2, (1987), pp. 249–262.MATHCrossRefGoogle Scholar
  12. [12]
    H. Kreiss and J. Oliger, “Comparison of accurate methods for the integration of hyperbolic problems”, Tellus, V24, (1972), pp. 199–215.MathSciNetCrossRefGoogle Scholar
  13. [13]
    H. Kreiss and J. Oliger, “Stability of the Fourier method”, SIAM J. Numer. Anal., V16, (1979), pp. 421–433.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Kriess H.O. and Wu L. “On the stability definitions of difference approximations for Initial Boundary valur problems”, Comm. Pure Appl. Math. to appear.Google Scholar
  15. [15]
    A. Madja, J. McDonough and S. Osher, “The Fourier method for nonsmooth initial data”, Math. Comput., V32, (1978), pp. 1041–1081.CrossRefGoogle Scholar
  16. [16]
    B. McDonald, “Flux corrected pseudospectral methods for scalar hyperbolic conservation laws”, J. Comput. Phys., V82, (1989), pp. 413–428.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    S. Osher and C. -W. Shu, “High order essentially non-oscillatory schemes for Hamilton-Jacobi equations”, SIAM J. Numer. Anal., V28, (1991), pp. 907–922.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes”, J. Comput. Phys., V77, (1988), pp. 439–471.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock capturing schemes, II”, J. Comput. Phys., V83, (1989), pp. 32–78.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    K. R. Sreenivasan, “Transition and turbulent wakes and chaotic dynamical systems”, in S. H. Davis and J. L. Lumley, eds, Frontiers in Fluid Mechanics ( Springer, New York, 1985 ), pp. 41–67.Google Scholar
  21. [21]
    B. Strand- Ph.D thesis Uppsala University, to appear.Google Scholar
  22. [22]
    E. Tadmor, “Convergence of spectral methods for nonlinear conservation laws”, SIAM J. Numer. Anal., V26, (1989), pp. 30–44.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    H. Vandeven, “Family of spectral filters for discontinuous problems”, J. Sci. Comput., V6, (1991), pp. 159–192.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • David Gottlieb
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations