Skip to main content

Trophic Transfer and Biomagnification Potential of Contaminants in Aquatic Ecosystems

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 136))

Abstract

The potential ecological effects of sediment-associated contaminants are of concern, particularly in the context of dredged materials management. Sediments may serve as sinks by binding and sequestering contaminants that are entering aquatic systems where they can accumulate to much higher concentrations than in the overlying water. Sediments may then serve as secondary sources for transport of and biotic exposure to these materials, particularly when sediments are disturbed by physical perturbations such as storm events, bioturbation, or dredging and aquatic placement of dredged material. Sediment-sorbed contaminants may accumulate sufficiently in the tissues of prey organisms to elicit direct adverse effects, and they may be transferred to consumers through dietary intake or by increased concentrations in the water column. Aquatic organisms that bioaccumulate contaminants from water or sediment may transfer these contaminants to predators that forage on them. The extent to which these sediment-associated contaminants can move through aquatic food webs and thus potentially affect organisms at higher trophic levels is a crucial issue for environmental decision-making. The potential transfer of contaminants from one trophic level to another through aquatic food webs has not been thoroughly investigated. This trophic transfer potential must be known in order to evaluate the environmental significance of bioaccumulation of sediment-associated materials in aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bahner LH, Wilson AJ Jr, Sheppard JM, Patrick JM Jr, Goodman LR, Walsh GE (1977) Kepone®bioconcentration, accumulation, loss, and transfer through estua- rine food chains. Chesapeake Sci 18: 299–308.

    CAS  Google Scholar 

  • Baptist JP, Lewis CW (1969) Transfer of 65Zn and51Cr through an estuarine food chain. In: Nelson DJ, Evans FC (eds) Proceedings of the Second National Symposium on Radioecology. pp 420–430.

    Google Scholar 

  • Batterman AR, Cook PM, Lodge KB, Lothenbach DB, Butterworth BC (1989) Methodology used for a laboratory determination of relative contributions of water, sediment and food chain routes of uptake for 2,3,7,8-TCDD bioaccumulation by lake trout in Lake Ontario. Chemosphere 19: 451–458.

    Google Scholar 

  • Bennett WN, Brooks AS, Boraas ME (1986) Selenium uptake and transfer in an aquatic food chain and its effects on fathead minnow larvae. Arch Environ Contam Toxicol 15: 513–517.

    CAS  Google Scholar 

  • Berk SG, Colwell RR (1981) Transfer of mercury through a marine microbial food web. J Exp Mar Biol Ecol 52: 157–172.

    CAS  Google Scholar 

  • Biddinger GR, Gloss SP (1984) The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems. Residue Reviews 91: 103–145.

    PubMed  CAS  Google Scholar 

  • Borgmann U, Whittle DM (1992) Bioenergetics and PCB, DDE, and mercury dynamics in Lake Ontario lake trout (Salvelinus namaycush): A model based on surveillance data. Can J Fish Aquat Sci 49: 1086–1096.

    CAS  Google Scholar 

  • Broman D, Naf C, Lundbergh I, Zebuhr Y (1990) An in situ study on the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic food chain (seston-Mytilus Edulis L.—Somateria MollissimaL.) from the Baltic: An ecotoxicological perspective. Environ Toxicol Chem 9: 429–442.

    CAS  Google Scholar 

  • Broman D, Naf C, Rolff C, Zebuhr Y, Fry B, Hobbie J (1992) Using ratios of stable nitrogen isotopes to estimate bioaccumulation and flux of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ Toxicol Chem 11: 331–345.

    CAS  Google Scholar 

  • Bryan GW (1976) Heavy metal contamination in the sea. In: Johnston R (ed) Marine Pollution. Academic Press, London, pp 185–302.

    Google Scholar 

  • Bryan GW (1979) Bioaccumulation of marine pollutants. Phil Trans R Soc Lond B 286: 483–505.

    CAS  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ Pollut 76: 89–131.

    PubMed  CAS  Google Scholar 

  • Burns KA, Teal JM (1973) Hydrocarbons in the pelagicSargassumcommunity. Deep- Sea Res 20: 207–211.

    CAS  Google Scholar 

  • Burns KA, Teal JM (1979) The West Falmouth oil spill: Hydrocarbons in the salt marsh ecosystem. Est Coastal Mar Sci 8: 349–360.

    CAS  Google Scholar 

  • Canton JH, Greve PA, Slooff W, Van Esch GJ (1975) Toxicity, accumulation and elimination of α-hexachlorocyclohexane (α-HCH) with freshwater organisms of different trophic levels. Water Res 9: 1163–1169.

    CAS  Google Scholar 

  • Clark KE, MacKay D (1991) Dietary uptake and biomagnifieation of four chlorinated hydrocarbons by guppies. Environ Toxicol Chem 10: 1205–1217.

    CAS  Google Scholar 

  • Connell DW (1989) Biomagnifieation by aquatic organisms—A proposal. Chemosphere 19: 1573–1584.

    CAS  Google Scholar 

  • Connolly JP, Tonelli R (1985) Modelling kepone in the striped bass food chain of the James River estuary. Est Coastal Shelf Sci 20: 349–366.

    CAS  Google Scholar 

  • Connolly JP, Pedersen CJ (1987) A thermodynamic-based evaluation of organic chemical accumulation in aquatic organisms. Environ Sci Technol 22: 99–103.

    Google Scholar 

  • Connolly JP (1991) Application of a food chain model to polychlorinated biphenyl contamination of the lobster and winter flounder food chains in New Bedford Harbor. Environ Sci Technol 25: 760–770.

    CAS  Google Scholar 

  • Dallinger R, Kautzky H (1985) The importance of contaminated food for the uptake of heavy metals by rainbow trout(Salmo gairdneri): A field study. Oecologia 67: 82–89.

    Google Scholar 

  • Dallinger R, Prosi F, Segner H, Back H (1987) Contaminated food and uptake of heavy metals by fish: A review and a proposal for further research. Oecologia 73: 91–98.

    Google Scholar 

  • D’ltri FM (1990) The biomethylation and cycling of selected metals and metalloids in aquatic sediments. In: Baudo R, Giesy JP, Muntau H (eds) Sediments: Chemistry and Toxicity of In-Place Pollutants. Lewis Publishers, Chelsea, MI. pp 163–214.

    Google Scholar 

  • Dobroski CJ Jr, Epifanio CE (1980) Accumulation of benzo[a]pyrene in a larval bivalve via trophic transfer. Can J Fish Aquat Sci 37: 2318–2322.

    CAS  Google Scholar 

  • Enk MD, Mathis BJ (1977) Distribution of cadmium and lead in a stream ecosystem. Hydrobiologia 52: 153–158.

    CAS  Google Scholar 

  • Evans MS, Noguchi GE, Rice CP (1991) The biomagnifieation of polychlorinated biphenyls, toxaphene, and DDT compounds in a Lake Michigan offshore food web. Arch Environ Contain Toxicol 20: 87–93.

    CAS  Google Scholar 

  • Fowler SW, Elder DL (1978) PCB and DDT residues in Mediterranean pelagic food chain. Bull Environ Contam Toxicol 19: 244–249.

    PubMed  CAS  Google Scholar 

  • Fowler SW, Heyraud M, La Rosa J (1978) Factors affecting methyl and inorganic mercury dynamics in mussels and shrimp. Mar Biol 46: 267–276.

    CAS  Google Scholar 

  • Gardner WS, Kendall DR, Odom RR, Windom HL, Stephens JA (1978) The distribution of methyl mercury in a contaminated salt marsh ecosystem. Environ Pollut 15: 243–151.

    CAS  Google Scholar 

  • Gobas FAPC, McCorquordale JR, Haffner GD (1993) Intestinal absorption and biomagnifieation of organochlorines. Environ Toxicol Chem 12: 567 - 576.

    CAS  Google Scholar 

  • Goerke H, Eder G, Weber K, Ernst W (1979) Patterns of organochlorine residues in animals of different trophic levels from the Weser Estuary. Mar Pollut Bull 10: 127–133.

    CAS  Google Scholar 

  • Grzenda AR, Paris DF, Taylor WJ (1970) The uptake, metabolism, and elimination of chlorinated residues by goldfish(Carassius auratus(fed a 14C-DDT contaminated diet. Trans Am Fish Soc 2: 385–396.

    Google Scholar 

  • Gunkel G (1981) Bioaccumulation of a herbicide (Atrazine, S-Atrazine) in the whitefish(Coregonus feraJ.): Uptake and distribution of the residue in fish. Arch Hydrobiol Suppl 59: 252–287.

    CAS  Google Scholar 

  • Guthrie RK, David EM, Cherry DS, Murray HE (1979) Biomagnifieation of heavy metals by organisms in a marine microcosm. Bull Environ Contam Toxicol 21: 53–61.

    PubMed  CAS  Google Scholar 

  • Hamdy MK, Prabhu NV (1979) Behavior of mercury in biosystems III. Biotransference of mercury through food chains. Bull Environ Contam Toxicol 21: 170–178.

    PubMed  CAS  Google Scholar 

  • Hamelink JL, Waybrant RC (1976) DDE and lindane in a large-scale model lentic ecosystem. Trans Am Fish Soc 105: 124–134.

    CAS  Google Scholar 

  • Hamelink JL (1977) Fish and chemicals: The process of accumulation. Ann Rev Pharmacol Toxicol 17: 167–177.

    CAS  Google Scholar 

  • Hamelink JL, Spacie A (1977) Fish and chemicals: the process of accumulation. Annu Rev Pharmacol Toxicol 17: 167–177.

    PubMed  CAS  Google Scholar 

  • Hardisty MW, Huggins RJ, Kartar S, Sainsbury M (1974) Ecological implications of heavy metal in fish from the Severn Estuary. Mar Pollut Bull 5: 12–15.

    CAS  Google Scholar 

  • Hardy JT, Sullivan MF, Crecelius EA, Apts CW (1984) Transfer of cadmium in a phytoplankton-oyster-mouse food chain. Arch Environ Contam Toxicol 13: 419–425.

    PubMed  CAS  Google Scholar 

  • Hargrave BT, Harding GC, Vass WP, Erickson PE, Fowler BR, Scott V (1992) Organochlorine pesticides and polychlorinated biphenyls in the Arctic Ocean food web. Arch Environ Contam Toxicol 22: 41–54.

    PubMed  CAS  Google Scholar 

  • Huckabee JW, Elwood JW, Hildebrand SG (1979) Accumulation of mercury in freshwater biota. In: Nriagu JO (ed) The Biogeochemistry of Mercury in the Environment. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 277–302.

    Google Scholar 

  • Jernelöv A, Lann H (1971) Mercury accumulation in food chains. Oikos 22: 403–406.

    Google Scholar 

  • Johnson BT, Saunders CR, Sanders HO, Campbell RS (1971) Biological magnification and degradation of DDT and Aldrin by freshwater invertebrates. J Fish Res Bd Can 28: 705–709.

    CAS  Google Scholar 

  • Kalmaz EV, Kalmaz GD (1979) Transport, distribution and toxic effects of polychlorinated biphenyls in ecosystems. Rev Ecol Model 6: 223–251.

    CAS  Google Scholar 

  • Kay SH (1984) Potential for biomagnification of contaminants within marine and freshwater food webs. Technical Report D-84-7, U.S. Army Corps of Engineers Waterways Experiment Station, Yicksburg, MS.

    Google Scholar 

  • Kay SH (1985) Cadmium in aquatic food webs. Residue Rev 96: 13–43.

    CAS  Google Scholar 

  • Kayser H (1982) Cadmium effects in food chain experiments with marine plankton algae (Dinophyta) and benthic filter feeders (Tunicata). Netherlands J Sea Res 16: 444–454.

    CAS  Google Scholar 

  • Kiørboe T, Møhlenberg F, RiisgÃ¥rd HU (1983) Mercury levels in fish, invertebrates, and sediment in a recently recorded polluted area (Nissum Broad, Western Limfjord, Denmark). Mar Pollut Bull 14: 21–24.

    Google Scholar 

  • Klump DW, Peterson PJ (1979) Arsenic and other trace elements in the waters and organisms of an estuary in SW England. Environ Pollut 19: 11–20.

    Google Scholar 

  • Knauer GA, Martin JH (1972) Mercury in a marine pelagic food chain. Limnol Oceanogr 17: 868–876.

    CAS  Google Scholar 

  • Leatherland TM, Burton JD, Culkin F, McCartney MJ, Morris RJ (1973) Concentrations of some trace metals in pelagic organisms and of mercury in northeast Atlantic Ocean water. Deep-Sea Res 20: 679–685.

    CAS  Google Scholar 

  • LeBlanc PJ, Jackson AL (1973) Arsenic in marine fish and invertebrates. Mar Pollut Bull 4: 88–90.

    CAS  Google Scholar 

  • Lewis AG, Cave WR (1982) The biological importance of copper in oceans and estuaries. Oceanogr Mar Biol Ann Rev 20: 471 - 695.

    CAS  Google Scholar 

  • Lindsay DM, Sanders JG (1990) Arsenic uptake and transfer in a simplified estua- rine food chain. Environ Toxicol Chem 9: 391–395.

    CAS  Google Scholar 

  • Livingston RJ, Thompson NP, Meeter DA (1978) Long-term variation of organochlorine residues and assemblages of epibenthic organisms in a shallow north Florida (USA) estuary. Mar Biol 46: 355–372.

    CAS  Google Scholar 

  • Lunde G (1977) Occurrence and transformation of arsenic in the marine environment. Environ Hlth Persp 19: 47–52.

    CAS  Google Scholar 

  • Macek KJ, Petrocelli SR, Sleight BH III (1979) Consideration in assessing the potential for, and significance of, biomagnification of chemical residues in aquatic food chains. In: Marking LL, Kimerle RA (eds)Aquatic Toxicology, ASTMSTP 667. American Society for Testing and Materials, pp 251–268.

    Google Scholar 

  • Macek KJ, Korn S (1970) Significance of the food chain in DDT accumulation by fish. J Fish Res Bd Can 27: 1496–1498.

    CAS  Google Scholar 

  • Maeda S, Inoue R, Kozono T, Tokuda T, Ohki A, Takeshita T (1990) Arsenic metabolism in a freshwater food chain. Chemosphere 20: 101–108.

    CAS  Google Scholar 

  • Mathers RA, Johansen PH (1985) The effects of feeding ecology on mercury accumulation in walleye (Stizostedion vitreum)and pike(Esox lucius)in Lake Simcoe. Can J Zool 63: 2006–2012.

    CAS  Google Scholar 

  • Mathis BJ, Cummings TF (1973) Selected metals in sediments, water, and biota in the Illinois River. J Water Pollut Cont Fed 45: 1573–1583.

    CAS  Google Scholar 

  • May K, Stoeppler M, Reisinger K (1987) Studies in the ratio total mercury/methyl mercury in the aquatic food chain. Toxicol Environ Chem 13: 153–159.

    CAS  Google Scholar 

  • McEnerney JT, Davis DE (1979) Metabolic fate of Atrazine in theSpartina alterniflora-detritus-Ucapugnaxfood chain. J Environ Qual 8: 335–338.

    CAS  Google Scholar 

  • McLeese DW, Burridge LE (1987) Comparative accumulation of PAHs in four marine invertebrates. In: Capuzzo JM, Kester DR (eds) Oceanic Processes in Marine Pollution, Volume 1. Robert E. Krieger Publishing Company, Malabar, FL. pp 110–117.

    Google Scholar 

  • Metcalf RL, Sangha GK, Kapoor IP (1971) Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ Sci Technol 5: 709–713.

    CAS  Google Scholar 

  • Mikac N, Picer M, Stegnar P, TuÅ¡ek-Žhidarić M (1985) Mercury distribution in a polluted marine area, ratio of total mercury, methyl mercury and selenium in sediments, mussels and fish. Water Res 19: 1387–1392.

    CAS  Google Scholar 

  • National Academy of Sciences (NAS) (1975) Petroleum in the marine environment. Workshop on inputs, fates, and the effects of petroleum in the marine environment. Ocean Affairs Board, National Academy of Sciences, Washington, DC. pp 41–72.

    Google Scholar 

  • Neff JM (1979) Polycyclie Aromatic Hydrocarbons in the aquatic environment: Sources, fates and biological effects. Applied Science, London. 262 pp.

    Google Scholar 

  • Niethammer KR, White DH, Baskett TS, Sayre MW (1984) Presence and biomagnifieation of organochlorine chemical residues in oxbow lakes of northeastern Louisiana. Arch Environ Contam Toxicol 13: 63–74.

    PubMed  CAS  Google Scholar 

  • Nisbet CT, Sarofim AF (1972) Rates and routes of transport of PCBs in the environment. Environ Hlth Perspec 1: 21–38.

    CAS  Google Scholar 

  • O’Connor JM, Pizza JC (1987) Pharmacokinetic model for the accumulation of PCBs the marine fish. In: Capuzzo JM, Kester DA (eds) Ocean processes in marine pollution: Biological processes and wastes in the ocean, Volume 1, No. 12. Robert E. Krieger Publishing Co., Malabar, FL. pp 119–128.

    Google Scholar 

  • Oliver BG, Niimi AJ (1985) Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use for prediction of environmental residues. Environ Sci Technol 19: 842–849.

    CAS  Google Scholar 

  • Oliver BG, Niimi A J (1988) Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem. Environ Sci Technol 22: 388–97.

    CAS  Google Scholar 

  • Parrish KM, Carr RA (1976) Transport of mercury through a laboratory two-level marine food chain. Mar Pollut Bull 7: 90 - 91.

    CAS  Google Scholar 

  • Penrose WR (1974) Arsenic in the marine and aquatic environments: Analysis, occurrence, and significance. CRC Crit Rev Environ Cont 4: 465–482.

    CAS  Google Scholar 

  • Penrose WR, Conacher HBS, Black R, Meranger JC, Miles W, Cunningham HM, Squires WR (1977) Implications of inorganic/organic interconversion on fluxes of arsenic in marine food webs. Environ Hlth Perspec 19: 53–59.

    CAS  Google Scholar 

  • Pentreath RJ (1976) The accumulations of mercury by the thornback ray,Raja clavataL. J Exp Mar Biol Ecol 25: 131–140.

    CAS  Google Scholar 

  • Pierce RJ, Wright TD, O’Connor JM (1981) Biomagnification: Relationship to dredged material disposal in the coastal marine environment. Estuaries 4: 258.

    Google Scholar 

  • Prosi F (1989) Factors controlling biological availability and toxic effects of lead in aquatic organisms. Sci Total Environ 79: 157–169.

    PubMed  CAS  Google Scholar 

  • Prosser CL (1973) Comparative Animal Physiology. W.B. Saunders Co., Philadelphia, PA.

    Google Scholar 

  • Rasmussen JB, Rowan DJ, Lean DRS, Carey JH (1990) Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namaycush)and other pelagic fish. Can J Fish Aquat Sci 47: 2030–2038.

    Google Scholar 

  • Reinert RE (1972) Accumulation of dieldrin in an alga(Scenedesmus obliquus), Daphnia magna, and the guppy (Poecilia reticulata). J Fish Res Bd Can 29: 1413–1418.

    CAS  Google Scholar 

  • Ribeyre F, Delarche A, Boudou A (1980) Transfer of methyl mercury in an experimental freshwater trophic chain—temperature effects. Environ Pollut (Series B) 1: 259–268.

    CAS  Google Scholar 

  • Rodgers DW, Watson TA, Langan JS, Wheaton TJ (1987) Effects of pH and feeding regime on methyl mercury accumulation within aquatic microcosms. Environ Pollut 45: 261–274.

    PubMed  CAS  Google Scholar 

  • Rosemarin A, Notini M, Holmgren K (1985) The fate of arsenic in the Baltic SeaFucus vesiculosusecosystem. Ambio 14: 342–345.

    CAS  Google Scholar 

  • Rubinstein NI, Gilliam WT, Gregory NR (1984) Dietary accumulation of PCBs from a contaminated sediment source by a demersal fish(Leiostomus xanthurus). Aquat Toxicol 5: 331–342.

    CAS  Google Scholar 

  • Saiki MK, Jennings MR, Brumbaugh WG (1993) Boron, molybdenum, and selenium in aquatic food chains from the Lower San Joaquin River and its tributaries, California. Arch Environ Contam Toxicol 24: 307–319.

    PubMed  CAS  Google Scholar 

  • Sanders JG, Osman RW, Riedel GF (1989) Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filter-feeding invertebratesEurytemora affinis, Balanus improvisus, andCrassostrea virginica. Mar Biol 103: 319–325.

    CAS  Google Scholar 

  • Sandholm M, Oksanen HE, Pesonen L (1973) Uptake of selenium by aquatic organisms. Limnol Oceanogr 18: 496–499.

    CAS  Google Scholar 

  • Saward D, Stirling A, Topping G (1975) Experimental studies on the effects of copper on a marine food chain. Mar Biol 29: 351–361.

    CAS  Google Scholar 

  • Scura ED, Theilacker GH (1977) Transfer of the chlorinated hydrocarbon PCB in a laboratory marine food chain. Mar Biol 40: 317–325.

    CAS  Google Scholar 

  • Shaw GR, Connell DW (1982) Factors influencing concentrations of polychlori- nated biphenyls in organisms from an estuarine ecosystem. Aust J Mar Freshw Res 34: 1057–1070.

    Google Scholar 

  • Sims GG, Campbell JR, Zemlyak F, Graham JM (1977) Organochlorine residues in fish and fishery products from the Northwest Atlantic. Bull Environ Contam Toxicol 18: 697–705.

    PubMed  CAS  Google Scholar 

  • Skei JM, Saunders M, Price NB (1976) Mercury in plankton from a polluted Norwegian fjord. Mar Pollut Bull 7: 34–36.

    CAS  Google Scholar 

  • Stewart J, Schulz-Baldes M (1976) Long-term lead accumulation in abalone(Halotisspp.) fed on lead-treated brown algae (Egregia laevigata). Mar Biol 36: 19–24.

    CAS  Google Scholar 

  • Swartz RC, Lee H (1980) Biological processes affecting the distribution of pollutants in marine sediments. Part I. accumulation, trophic transfer, biodegradation and migration. In: Baker RA (ed) Contaminants and sediments—Volume 2, Analysis, chemistry, biology. Ann Arbor Science, Ann Arbor, MI. pp 533–552.

    Google Scholar 

  • Syracuse Research Corporation (1985) Environmental Fate Data Bases. Syracuse Research Corp., Syracuse, NY.

    Google Scholar 

  • Thomann RV, Connolly JP (1984) Model of PCB in the Lake Michigan lake trout food chain. Environ Sci Technol 18: 65–71.

    CAS  Google Scholar 

  • Thomann RV (1989) Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ Sci Technol 23: 699–707.

    CAS  Google Scholar 

  • Unsal M (1982) The accumulation and transfer of vanadium within the food chain. Mar Pollut Bull 13: 141–142.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1979) Water-related environmental fate of 129 priority pollutants, Volumes 1 and 2. EPA/440/4-79-029a&b, USEPA Washington, DC.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA/USACE) (1991) Evaluation of dredged material proposed for ocean disposal (Testing Manual). EPA-503/8-91/ 001, USEPA, Washington, DC.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1993) Interim report on data and methods for assessment of 2,3,7,8-tetraehlorodibenzo-p-dioxin risks to aquatic life and associated wildlife. EPA/600/R-93/055, USEPA, Washington, DC.

    Google Scholar 

  • Van der Oost R, Heida H, Opperhuizen A (1988) Polychlorinated biphenyl congeners in sediments, plankton, molluscs, crustaceans, and eel in a freshwater lake: implications of using reference chemicals and indicator organisms in bioaccumulation studies. Arch Environ Contam Toxicol 17: 721–729.

    PubMed  Google Scholar 

  • Van Sprang P, Leger PH, Sorgeloos P (1991) A new test system for the evaluation of toxic levels of liposoluble products in the aquatic food chain usingArtemiaandMysidopsis bahiaas experimental animals. Aquat Toxicol 19: 319–328.

    Google Scholar 

  • Ward TJ, Connell RL, Anderson RB (1986) Distribution of cadmium, lead and zinc amongst the marine sediments, seagrasses and fauna, and the selection of sentinel accumulators, near a lead smelter in South Australia. Aust J Mar Freshw Res 57: 567–585.

    Google Scholar 

  • Watras CJ, MacFarlane J, Morel FMM (1985) Nickel accumulation byScenedesmusandDaphnia: Food-chain transport and geochemieal implications. Can J Fish Aquat Sci 42: 724–730.

    CAS  Google Scholar 

  • Weininger D (1978) Accumulation of PCBs in lake trout in Lake Michigan. Ph.D. dissertation, University of Wisconsin-Madison, Madison, WI.

    Google Scholar 

  • Whittle DM, Sergeant DB, Huestis SY, Hyatt WH (1992) Foodchain accumulation of PCDD and PCDF isomers in the Great Lakes aquatic community. Chemo- sphere 25: 181–184.

    CAS  Google Scholar 

  • Williams PM, Weiss HV (1973) Mercury in the marine environment: concentration in sea water and in a pelagic food chain. J Fish Res Bd Can 30: 293–295.

    CAS  Google Scholar 

  • Willis JH, Sunda WG (1984) Relative contributions of food and water in the accumulation of zinc by two species of marine fish. Mar Biol 80: 273–279.

    CAS  Google Scholar 

  • Wren CD, MacCrimmon HR, Loescher BR (1983) Examination of bioaccumulation and biomagnifieation of metals in a precambrian shield lake. Water Air Soil Pollut 19: 277–291.

    CAS  Google Scholar 

  • Wren CD, MacCrimmon HR (1986) Comparative bioaccumulation of mercury in two adjacent freshwater ecosystems. Water Res 20: 763–769.

    CAS  Google Scholar 

  • Wyman KD, O’Connors HB Jr (1980) Implications of short-term PCB uptake by small estuarine copepods (genusAcartia)from PCB-contaminated waters, inorganic sediments and phytoplankton. Est Coastal Mar Sci 11: 121–131.

    CAS  Google Scholar 

  • Young ML (1975) The transfer of 65Zn and 59Fe along aFucus serratus(L.) →Littoina obtusata(L.) food chain. J Mar Biol Assoc UK 55: 583–610.

    CAS  Google Scholar 

  • Young ML (1977) The roles of food and direct uptake from water in the accumulation of zinc and iron in the tissues of the dogwhelk,Nucella lapillus(L.). J Exp Mar Biol Ecol 30: 315–325.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Suedel, B.C., Boraczek, J.A., Peddicord, R.K., Clifford, P.A., Dillon, T.M. (1994). Trophic Transfer and Biomagnification Potential of Contaminants in Aquatic Ecosystems. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 136. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2656-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2656-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7623-4

  • Online ISBN: 978-1-4612-2656-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics