Skip to main content

Abstract

In the preceding chapter we noted that the crucial elements of living matter function as chemical machines. The immediate sources of energy for all life activities are exoergonic chemical reactions. Certainly, the ultimate energy source for life on earth is solar light, but it can never be used directly without transforming the energy of light quanta into the energy of chemical bonds. Practically all important intracellular chemical reactions are accelerated by specific protein catalysts, i.e., enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Kosower (1962), Molecular Biochemistry, McGraw-Hill, New York.

    Google Scholar 

  2. A. Fersht (1985), Enzyme Structure and Mechanism, 2nd ed., Freeman, New York.

    Google Scholar 

  3. L.A. Blumenfeld (1981), Problems of Biological Physics, Springer-Verlag, Heidelberg.

    Google Scholar 

  4. L.A. Blumenfeld (1983), Physics of Bioenergetic Pocesses, Springer-Verlag, Heidelberg.

    Google Scholar 

  5. J. Ricard, J. Buc, and J.C. Mennier (1977), European J. Biochem. 80, 581–592.

    CAS  Google Scholar 

  6. J. Buc, J. Ricard, and J.C. Mennier (1977), European J. Biochem. 80, 593–601.

    CAS  Google Scholar 

  7. D.E. Koshland, Jr. (1962), J. Theoret. Biol. 2, 75.

    Article  CAS  Google Scholar 

  8. D.E. Koshland, Jr and R.E. Neet (1968), Ann. Rev. Biochem. 37, 672.

    Article  Google Scholar 

  9. S. Milstein and L.A. Cohen (1970), Proc. Nat. Acad. Sci. USA 67, 1143–1147.

    Article  Google Scholar 

  10. R. Lumry (1959), The Enzymes, vol. 1, Academic Press, New York, p. 157.

    Google Scholar 

  11. E. Bauer (1935), Theoretical Biology, VJEM Press, Moscow.

    Google Scholar 

  12. N.I. Kobosev (1960), Zh. Fiz. Chim. 34,1443.

    Google Scholar 

  13. Yu.V. Medvedev (1930), New Ideas in the Enzyme Science (in Russian), USSR Academy of Sciences, Moscow.

    Google Scholar 

  14. Yu.J. Churgin, D.S. Chernavsky, and S.E. Shnoll (1967), Mol. Biol. (USSR) 1, 419–424.

    Google Scholar 

  15. S.E. Shnoll (1967), In: Oscillatory Phenomena in Biological and Chemical Systems, Nauka, Moscow, pp. 22–41.

    Google Scholar 

  16. E.A. Moelwyn-Hughes (1959), In: The Enzymes, Vol. 1, Academic Press, New York, p. 28.

    Google Scholar 

  17. C.N. Hinshelwood (1926), Proc. Roy. Soc. A113, p. 230.

    Google Scholar 

  18. N.P. Sidorenko and V.I. Descherevsky (1970), Biofizika (USSR) 15, 785–792.

    CAS  Google Scholar 

  19. L.A. Blumenfeld (1971), Biophysics (USSR) 16, 724–727.

    Google Scholar 

  20. L.A. Blumenfeld (1972), Biophysics (USSR) 17, 954–959.

    Google Scholar 

  21. L.A. Blumenfeld (1976), J. Theoret. Biol. 58, 269–284.

    Article  CAS  Google Scholar 

  22. E.R. Henry, J. Hofreichter, and W. Eaton (1987), In: Structure, Dynamics and Function of Biopolymers, Springer Series in Biophysics, vol. 1, Springer-Verlag, New York, pp. 20–24.

    Google Scholar 

  23. G. Carreri and E. Gratton (1986), In: The Fluctuating Enzyme (G.R. Welch, Ed.), Wiley, New York, pp. 227–262.

    Google Scholar 

  24. A.N. Kolmogorov (1954), Proc. Acad. Sci. USSR 98, 527–531.

    Google Scholar 

  25. V.I. Arnold and A. Avez (1968), Ergodic Problems of Classical Mechanics, Benjamin, New York.

    Google Scholar 

  26. S.P. de Groot and P. Mazur (1962), Non-equilibrium Thermodynamics, North-Holland, Amsterdam.

    Google Scholar 

  27. R. Balescu (1975), Equilibrium and Non-equilibrium Statistical Mechanics, Wiley-Interscience, New York.

    Google Scholar 

  28. H. Haken (1978), Sinergetics, Spinger-Verlag, Berlin.

    Google Scholar 

  29. I. Prigogine (1980), From Being to Becoming: Time and Complexity in Physical Sciences, Freeman, San Francisco.

    Google Scholar 

  30. F.C. Moon Chaotic Vibrations, Wiley-Interscience, New York.

    Google Scholar 

  31. H.A. Kramers (1940), Physica, 7 (1940), 305.

    Article  Google Scholar 

  32. L.V. Belovolova, L.A. Blumenfeld, D.Sh. Burbaev, and A.F. Vanin (1975) Molec. Biol. (USSR) 9, 934–940.

    CAS  Google Scholar 

  33. S. Glasstone, K.J. Laidler and H. Eyring (1941), The Theory of Rate Processes, McGraw-Hill, New York.

    Google Scholar 

  34. B. Gavish (1986), In: The Fluctuating Enzyme (G.R. Welch, Ed.) Wiley, New York, pp. 262–339.

    Google Scholar 

  35. V.M. Fain (1976), J. Chem. Phys. 65, 1854–1866.

    Article  CAS  Google Scholar 

  36. P.D. Boyer (1965), In: Dynamics of Energy-Transducing Membranes (L. Ernster, R.W. Estabrook and E.C. Slater, Eds.) Elsevier, Amsterdam, p. 389.

    Google Scholar 

  37. W.W. Cleland (1975), Acc. Chem. Res. 8, 145.

    Article  CAS  Google Scholar 

  38. L.A. Blumenfeld and R.M. Davydov (1979), Biochim. Biophys. Acta 549, 225–240.

    Google Scholar 

  39. L.A. Blumenfeld, D.S. Burbaev, and R.M. Davydov (1986), In: The Fluctuating Enzyme, (G.R. Welch, Ed.) Wiley, New York, pp. 369–401.

    Google Scholar 

  40. B. Somogyi, G.R. Welch and S. Damjanovich (1984), Biochim. Biophys. Acta 768, 81–112.

    CAS  Google Scholar 

  41. The Fluctuating Enzyme (1986), (G.R. Welch, Ed.) Wiley, New York.

    Google Scholar 

  42. B. Gavish and M.M. Werber (1979), Biochemistry 18, 1270–1975.

    Article  Google Scholar 

  43. Models for Protein Dynamics (1976), (H.J.C. Berendsen, Ed.) CECAM, University of Paris IX, France.

    Google Scholar 

  44. J.A. McCammon, B.R. Gelin, and M. Karplus (1977), Nature (London) 267, 585–590.

    Article  CAS  Google Scholar 

  45. M. Karplus and J.A. McCammon (1981), CRC Crit. Rev. Biochem. 9, 293–349.

    Article  CAS  Google Scholar 

  46. S. Swaminathan, T. Ichiye, W. van Gunsteren, and M. Karplus (1982), Biochemistry 21, 5230–5240.

    Article  PubMed  CAS  Google Scholar 

  47. R.M. Levy, D. Perahia, and M. Karplus (1982), Proc. Nat. Acad. Sci. USA 79, 1346–1350.

    Article  CAS  Google Scholar 

  48. M. Levitt and R. Sharon (1988), Proc. Nat. Acad. Sci. USA 85, 7557–7561.

    Article  CAS  Google Scholar 

  49. A. Warshel (1984), Proc. Nat. Acad. Sci. USA 81, 444–448.

    Article  CAS  Google Scholar 

  50. A. Warshel and S.T. Russel (1984), Quart. Rev. Biophys. 17, 283–427.

    Article  CAS  Google Scholar 

  51. A.S. Davydov (1982), Biology and Quantum Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  52. A.V. Vologodskii and M.D. Frank-Kamenetskii (1983), FEBS Lett. 160, 173–176.

    Article  PubMed  CAS  Google Scholar 

  53. K. Mizuucki, M. Mizuucki and M. Geliert (1982), J. Mol. Biol. 156, 229–243.

    Article  Google Scholar 

  54. V.I. Lyamichev, I.G. Panyutin, and M.D. Frank-Kamenetzkii (1983), FEBS Lett. 153, 298–302.

    Article  PubMed  CAS  Google Scholar 

  55. L.A. Blumenfeld and P.G. Pleshanov (1987), In: Structure, Dynamics and Function of Biomolecules (A. Ehrenberg, A. Graslund, and L. Nilsson, Eds.) Springer-Verlag, Berlin, pp. 171–175.

    Google Scholar 

  56. S.S. Isied, C. Kuehn, and C. Worosila (1984), J. Amer. Chem. Soc. 106, 1722–1726.

    Article  CAS  Google Scholar 

  57. C. Creutz and N. Suten (1973), Proc. Nat. Acad. Sci. USA 70, 1701–1703.

    Article  CAS  Google Scholar 

  58. C. Creutz and N. Suten (1973), J. Biol. Chem. 249, 6788–6795.

    Google Scholar 

  59. M. Gutman and E. Nachliel (1990), Biochim. Biophys. Acta 1015, 391–414.

    Article  CAS  Google Scholar 

  60. E. Pines and D. Huppet (1985), Chem. Phys. Lett. 116, 295–300.

    Article  CAS  Google Scholar 

  61. A.A. Timoshin, A.N. Tikhonov, and L.A. Blumenfeld (1984), Biophysics (USSR) 29, 338–340.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York

About this chapter

Cite this chapter

Blumenfeld, L.A., Tikhonov, A.N. (1994). Principles of Enzyme Catalysis. In: Biophysical Thermodynamics of Intracellular Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2630-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2630-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7615-9

  • Online ISBN: 978-1-4612-2630-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics