Skip to main content

Molecular Machines: Mechanics and/or Statistics?

What are Molecular Machines and Whether or not a Classical Thermodynamic Approach is Valid for the Description of Biological Systems

  • Chapter
Biophysical Thermodynamics of Intracellular Processes

Abstract

To understand the main features of the mechanisms of energy transduction at the molecular level we need, first of all, to get an answer to the question: How the laws of thermodynamics, including the Second Law, can be applied to explain performing work by one macromolecule acting individually and independently on the states of other ones? The interest in this subject had been suggested to one of us (L.A.B.) as early as 1971–1972, by the analysis of certain biophysical aspects of enzymes functioning [1, 2]. The scrutiny of the “mechanical” properties of macromolecules had led to the formulation of the new concept of enzyme catalysis, called the relaxation concept. At the same time, McClare independently began to analyze the operation of macromolecules considering them as molecular machines [3–6]. We want to start our analysis of this problem by reviewing in brief some principle notions in theoretical bioenergetics that had been put forward by McClare, although, it would be much more interesting and useful for the reader to read his original works [3–6]. Many of McClare’s original and clear ideas were ahead of conventional concepts in the realm of biothermodynamics, and were probably not appreciated in full by the majority of biophysicists and biochemists. The main points and conclusions of this chapter are consonant with McClare’s ideas.

Article Note

The problem we have to consider is the molecular nature of living things, and, particularly, whether such systems can work the same way as ordinary chemical machines…. Only by re-examining some of our fundamental beliefs will it be possible to resolve the problems which exist at present in bioenergetics.

(C.W.F. McClare, Chemical machines, Maxwell’s demon and living organisms (1971), J. Theor. Biol. 2, 1–34.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.A. Blumenfeld (1971), Biophysics (USSR) 16, 724–727.

    Google Scholar 

  2. L.A. Blumenfeld (1981), Problems of Biological Physics, Springer-Verlag, Heidelberg.

    Google Scholar 

  3. C.W.F. McClare (1971), J. Theoret. Biol. 30, 1–34.

    Article  CAS  Google Scholar 

  4. C.W.F. McClare (1972), J. Theoret. Biol. 35, 233–246.

    Article  CAS  Google Scholar 

  5. C.W.F. McClare (1972), J. Theoret. Biol. 35, 569–595.

    Article  CAS  Google Scholar 

  6. C.W.F. McClare (1974), Ann. N.Y. Acad. Sci. 227, 74–97.

    Article  PubMed  CAS  Google Scholar 

  7. A.B. Pippard (1957), Elements of Classical Thermodynamics, Cambridge University Press, Cambridge.

    Google Scholar 

  8. P. and T. Ehrenfest (1912), In: Encyklopedie der matematischen Wissenshaften, Band 4, Nr. 32, Teubner, Leipzig.

    Google Scholar 

  9. T.L. Hill (1960), Statistical Thermodynamics, Addison-Wesley, Reading, MA.

    Google Scholar 

  10. I.M. Lifshitz (1968), J. Exper. and Theoret. Phys. (USSR) 55, 2408–2422.

    Google Scholar 

  11. Models for Protein Dynamics (1976) (H.J.C. Berendsen, Ed.), CEC AM, University of Paris IX, France.

    Google Scholar 

  12. J.A. McCammon, B.R. Gelin, and M. Karplus (1977), Nature (London) 267, 585–590.

    Article  CAS  Google Scholar 

  13. M. Karplus and J.A. McCammon (1981), CRC Crit. Rev. Biochem. 9, 293–349.

    Article  CAS  Google Scholar 

  14. R.M. Levy, D. Perahia and M. Karplus (1982), Proc. Nat. Acad. Sci. USA 79, 1346–1350.

    Article  CAS  Google Scholar 

  15. M. Levitt and R. Sharon (1988), Proc. Nat. Acad. Sci. USA 85, 7557–7561.

    Article  CAS  Google Scholar 

  16. A. Warshel and S. T. Russel (1984), Quart. Rev. Biophys. 17, 283–427.

    Article  CAS  Google Scholar 

  17. A. Warshel (1984), Proc. Nat. Acad. Sci. USA 81, 444–448.

    Article  CAS  Google Scholar 

  18. L. Onsager (1931), Phys. Rev. 37, 405–426.

    Article  CAS  Google Scholar 

  19. L. Onsager (1931), Phys. Rev. 38, 2265–2279.

    Article  CAS  Google Scholar 

  20. I. Prigogine (1967), Introduction to Thermodynamics of Irreversible Processes, Wiley, New York.

    Google Scholar 

  21. P. Glansdorf and I. Prigogine (1971), Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley-Interscience, London.

    Google Scholar 

  22. R. Balescu (1975), Equilibrium and Non-equilibrium Statistical Mechanics, Wiley- Interscience, New York.

    Google Scholar 

  23. G. Nicolis and I. Prigogine (1977), Self-organization in Nonequilibrium Systems. From Dissipative Structure to Order Through Fluctuations, Wiley, New York.

    Google Scholar 

  24. I. Prigogine (1980), From Being to Becoming: Time and Complexity in the Physical Sciences, W.H. Freeman, San Francisco.

    Google Scholar 

  25. A. Kachalsky and P.F. Curran (1965), Non-Equilibium Thermodynamics in Biophysics, Harvard University Press, Cambridge, MA.

    Google Scholar 

  26. T.L. Hill (1977), Free energy Transduction in Biology, Academic Press, New York.

    Google Scholar 

  27. T.L. Hill and E. Eisenberg (1981), Quart. Rev. Biophys. 14, 463–551.

    Article  CAS  Google Scholar 

  28. H.V. Westerhoff and K. van Dam (1979), In: Current Topics in Bioenergetics (D Rao. Sanadi, Ed.), Vol. 9, Academic Press, New York, pp. 1–62.

    Google Scholar 

  29. H.V. Westerhoff and K. van Dam (1987), Thermodynamics and Control of Biological Energy Transduction, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  30. S.R. Caplan and A. Essig (1983), Bioenergetics and Linear Nonequilibrium Thermodynamics, Harvard University Press, Cambridge, MA.

    Google Scholar 

  31. E.L. King and C. Altman (1956), J. Chem. Phys. 60, 1375–1380.

    Article  CAS  Google Scholar 

  32. R.M. Simmons and T.L. Hill (1976), Nature 263, 615–618.

    Article  PubMed  CAS  Google Scholar 

  33. B.E. Banks (1969), Chem. Brit. 5, 514–519.

    CAS  Google Scholar 

  34. B.E. Banks and C.A. Vernon (1970), J. Theoret. Biol. 29, 301–326.

    Article  CAS  Google Scholar 

  35. R.A. Ross and C.A. Vernon (1970), Chem. Brit. 6, 539–540.

    CAS  Google Scholar 

  36. D. Wilkie (1970), Chem. Brit. 6, 541–476.

    Google Scholar 

  37. T.L. Hill (1976), Trends Biochem. Sci. 2, 204–207.

    Google Scholar 

  38. L.A. Blumenfeld (1983), Physics of Bioenergetic Processes, Springer-Verlag, Heidelberg.

    Google Scholar 

  39. L. Brillouin (1956), Science and Information Theory, Academic Press, New York.

    Google Scholar 

  40. R. Landauer (1961), IBM J. Res. Dev. 5, 183–191.

    Article  Google Scholar 

  41. C.H. Bennett (1982), Int. J. Theoret. Phys. 21, 905–940.

    Article  CAS  Google Scholar 

  42. R. Landauer (1985), Ann. N.Y. Acad. Sci. 426, 161–170.

    Article  Google Scholar 

  43. C.H. Bennett and R. Landauer (1985), Sci. Amer. 253, 48–56.

    Article  Google Scholar 

  44. B.F. Gray (1975), Nature 253, 436–437.

    Article  PubMed  CAS  Google Scholar 

  45. C.R. Bagshaw (1982), Muscle Contraction, Chapman & Hall, London.

    Google Scholar 

  46. A.F. Huxley (1971), Proc. Roy. Soc. London, B 178, No. 1050, 1–27.

    Google Scholar 

  47. J.R. Bendall (1969), Muscles, Molecules and Movement. An Assay in the Contraction of Muscles, Heinemann, London.

    Google Scholar 

  48. B.F. Gray and I. Gonda (1977), J. Theoret. Biol. 69,167–186.

    Article  CAS  Google Scholar 

  49. A. Fersht, Enzyme Structure and Mechanism, 2nd ed., Freeman, New York, 1985.

    Google Scholar 

  50. P. Mitchell (1961), Nature 191,144–148.

    Article  PubMed  CAS  Google Scholar 

  51. P. Mitchell (1966), Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK.

    Google Scholar 

  52. A.N. Tikhonov and L.A. Blumenfeld (1985), Biophysics (USSR) 30, 527–537.

    CAS  Google Scholar 

  53. H. Rottenberg, T. Grunwald, and M. Avron (1971), FEBS Lett. 13,41–44.

    Article  PubMed  CAS  Google Scholar 

  54. S. Schuldiner, H. Rottenberg, and M. Avron (1972), European J. Biochem. 25, 64–70.

    CAS  Google Scholar 

  55. H. Rottenberg (1979), Meth. Enzymol. 55, 547–569.

    Article  PubMed  CAS  Google Scholar 

  56. H.T. Witt (1971), Quart. Rev. Biophys. 4, 365–477.

    Article  CAS  Google Scholar 

  57. H.T. Witt (1979), Biochim. Biophys. Acta 505, 355–427.

    CAS  Google Scholar 

  58. D.M. Nesbitt and A.S. Berg (1982), Biochim. Biophys. Acta 679, 169–174.

    Article  CAS  Google Scholar 

  59. A.N. Tikhonov and A.A. Timoshin (1985), Biol Membranes (USSR) 2, 608–626.

    CAS  Google Scholar 

  60. L.A. Staehelin, P.A. Armond, and K.R. Millerr (1976), Brookhaven Symp. Biol. 28, 278–315.

    Google Scholar 

  61. P.A. Armond, L.A. Staehelin, and C.J. Arntzen (1977), J. Cell Biol. 73, 400–418.

    Article  PubMed  CAS  Google Scholar 

  62. K.R. Miller and R.A. Gusman (1979), Biochim. Biophys. Acta 546, 481–497.

    Article  CAS  Google Scholar 

  63. K.R. Miller (1980), Biochim. Biophys. Acta 592,143–152.

    Article  CAS  Google Scholar 

  64. B. Andersson and J.M. Anderson (1980), Biochim. Biophys. Acta 593, 427–440.

    Article  CAS  Google Scholar 

  65. J.M. Anderson (1982), FEBS Lett. 138, 62–66.

    Article  CAS  Google Scholar 

  66. J.M. Anderson and W. Haehnel (1982), FEBS Lett. 146, 13–17.

    Article  Google Scholar 

  67. J.M. Anderson and R. Malkin (1982), FEBS Lett. 148, 293–296.

    Article  CAS  Google Scholar 

  68. J.M. Anderson and A. Melis (1983), Proc. Nat. Acad. Sci. USA 80, 745–749.

    Article  CAS  Google Scholar 

  69. W.S. Chow, C.Miller and J.M. Anderson (1991), Biochim. Biophys. Acta 1057, 69–77.

    Article  CAS  Google Scholar 

  70. A. Polle and W. Junge (1986), Biochim. Biophys. Acta 848, 257–264.

    Article  CAS  Google Scholar 

  71. W. Junge and A. Polle (1986), Biochim. Biophys. Acta 848, 265–273.

    Article  CAS  Google Scholar 

  72. W. Junge and S. McLaughlin (1987), Biochim. Biophys. Acta 890, 1–5.

    Article  CAS  Google Scholar 

  73. Y.Q. Hong and W. Junge (1983), Biochim. Biophys. Acta 722, 197–208.

    Article  Google Scholar 

  74. W. Junge, W. Auslander, A.J. McGeer, and T. Runge (1979), Biochim. Biophys. Acta 546, 121–141.

    Article  CAS  Google Scholar 

  75. A.N. Tikhonov and L.A. Blumenfeld (1990), J. Phys. Chem. (USSR) 64, 1729–1740.

    CAS  Google Scholar 

  76. L.A. Blumenfeld, A.Yu. Grosberg, and A.N. Tikhonov (1991), J. Chem. Phys. 95, 7541–7549.

    Article  CAS  Google Scholar 

  77. H.V. WesterhofT and Y. Chen (1985), Proc. Nat. Acad. Sci. USA 82, 3222–3226.

    Article  Google Scholar 

  78. H.V. Westerhoff, T.Y. Tsong, P.B. Chock, Y. Chen, and R.D. Astumian (1986), Proc. Nat. Acad. Sci. USA 83, 4734–4738.

    Article  CAS  Google Scholar 

  79. R.D. Astumiam, P.B. Chock, T.Y. Tsong, Y. Chen, and H.V. Westerhoff (1987), Proc. Nat. Acad. Sci. USA 84,434–438.

    Article  Google Scholar 

  80. H.V. Westerhoff and F. Kamp (1985), in: The Organization of Cell Metabolism (G.R. Welch and J.S. Clegg, Eds.) Plenum Press, New York, pp. 339–356.

    Google Scholar 

  81. F. Kamp and H.V. Westerhoff (1985), in: The Organization of Cell Metabolism J(G.R. Welch and J.S. Clegg, Eds.) Plenum Press, New York, pp. 357–365.

    Google Scholar 

  82. H.T. Westerhof, B.A. Melandry, G. Venturoli, G.F. Azzone, and D.B. Kell (1984), Biochim. Biophys. Acta 768, 257–292.

    Google Scholar 

  83. S.J. Ferguson (1985), Biochim. Biophys. Acta 811, 47–95.

    CAS  Google Scholar 

  84. Organized Multienzyme Systems (G.R. Welch, Ed.), 1985, Academic Press, New York.

    Google Scholar 

  85. A.T. Bharucha-Reid (1960), Elements of the Theory of Markov Processes and Their Applications, McGraw-Hill, New York.

    Google Scholar 

  86. D.A. McQuarrie (1967), Appl Probab. 8,1–66.

    Google Scholar 

  87. N.G. Van Kempen (1984), Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam.

    Google Scholar 

  88. H. Haken (1978), Sinergetics, Springer-Verlag, Berlin.

    Google Scholar 

  89. W. Horsthemke and R. Lefever (1984), Noise-Induced Transitions, Springer-Verlag, Berlin.

    Google Scholar 

  90. F.C. Moon (1987), Chaotic Vibrations, Wiley-Interscience, New York.

    Google Scholar 

  91. B. Gavish , in The Fluctuating Enzyme, (G.R. Welch, Ed.), Wiley, New York, 1986, pp. 262–339.

    Google Scholar 

  92. E.H. Serpersu and T.Y. Tsong (1983), J. Membr. Biol. 74,191–201.

    Article  PubMed  CAS  Google Scholar 

  93. E.H. Serpersu and T.Y. Tsong (1984), J. Biol Chem. 259, 7155–7162.

    PubMed  CAS  Google Scholar 

  94. C.T.J. Alkemade (1958), Physica 24, 1029.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Blumenfeld, L.A., Tikhonov, A.N. (1994). Molecular Machines: Mechanics and/or Statistics?. In: Biophysical Thermodynamics of Intracellular Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2630-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2630-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7615-9

  • Online ISBN: 978-1-4612-2630-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics