Advertisement

Function Fields of Conies, a Theorem of Amitsur—MacRae, and a Problem of Zariski

  • Jack Ohm

Abstract

One of the first and most fundamental results in the theory of non-algebraic field extensions is Lüroth’s theorem (1876): If kLk(t) = K are field extensions, with t transcendental over k, then there exists u ε L such that L = k(u).

Keywords

Function Field Field Extension Irreducible Polynomial Algebraic Extension Central Simple Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB]
    S. S. Abhyankar and C. Bajaj, Computations with algebraic curves; Symbolic and algebraic computation, ISSAC ’88; Lecture notes in computer science, No. 358, Springer, 1989, pp. 274–284.MathSciNetGoogle Scholar
  2. [A1]
    S. A. Amitsur, Generic splitting fields of central simple algebras, An­nals of Math. 62 (1955), 8–43.MathSciNetMATHCrossRefGoogle Scholar
  3. [A2]
    S. A. Amitsur, Generic splitting fields; Brauer groups in ring theory and algebraic geometry (F. van Oystaeyen and A. Verschoren editors), Lec­ture Notes in Math. 917, Springer, Berlin, 1982, pp. 1–24.Google Scholar
  4. [A3]
    S. A. Amitsur, Division algebras — a survey, Contemporary Math. 13 (1982), 3–26.MathSciNetMATHGoogle Scholar
  5. [Ar]
    E. Artin, Algebraic numbers and algebraic functions, Gordon and Breach, New York, 1967.MATHGoogle Scholar
  6. [BCSS]
    A. Beauville, J.-L. Colliot-Théléne, J.-J. Sansuc, and Sir P. Swinnerton-Dyer, Varietes stablement rationnelles non rationnelles, Annals of Math. 121 (1986), 283–315.CrossRefGoogle Scholar
  7. [C]
    C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surveys 6, American Math. Soc., New York, 1951.Google Scholar
  8. [Co1]
    J. -L. Colliot-Thélène, Les grands themes de Francois Chatelet, L’En­seignement Math. 34 (1988), 387–405.MATHGoogle Scholar
  9. [Co2]
    J. -L. Colliot-Thélène, Arithmetic des variétés rationnelles et prob­lèmes birationnels, Proc. Int. Congress Math. Berkeley, 1986, 641–653.Google Scholar
  10. [Css]
    J. -L. Colliot-Thélène, J.-J. Sansuc, and Sir P. Swinnerton-Dyer, In­tersections of two quadrics and Chatelet surfaces, J. fur die reine u. angew. Math.; Part I, vol. 373 (1986), 37–107; Part II, vol. 374 (1986), 72–165.Google Scholar
  11. [Cor]
    D. Coray, The Hasse principle for pairs of quadratic forms, in: Journees arithmétiques 1980, ed. J. V. Armitage, London Math. Soc. Lec­ture Notes Series 56 (1982), 237–246.CrossRefGoogle Scholar
  12. [D]
    J. Deveney, Ruled function fields, Proc. Amer. Math. Soc. 86 (1982), 213–215.MathSciNetMATHCrossRefGoogle Scholar
  13. [E]
    M. Eichler, Introduction to the theory of algebraic numbers and func­tions, Academic Press, New York, 1966.MATHGoogle Scholar
  14. [F]
    M. Fried, A note on principal ideals and smooth curves, J. of Algebra 74 (1982), 124–139.MathSciNetMATHCrossRefGoogle Scholar
  15. [G]
    W.-D. Geyer, The automorphism group of the field of all algebraic numbers, Atas da 5a escola de algebra, IMPA vol. 11, Rio de Janeiro, 1978, 167–199.MathSciNetGoogle Scholar
  16. [K]
    I. Kaplansky, Linear algebra and geometry, Chelsea, New York, 1974.Google Scholar
  17. [Ke]
    I. Kersten, Brauergruppen von Korpern, Aspekte der Math. Band D6, Vieweg & Sohn, Braunschweig/Wiesbaden, 1990.Google Scholar
  18. [Kn]
    M. Knebusch, Generic splitting of quadratic forms I, Proc. London Math. Soc. 33 (1976), 65–93; II, ibid. 34 (1977), 1–31.MathSciNetCrossRefGoogle Scholar
  19. [L]
    T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, Mass., 1980.Google Scholar
  20. [LT]
    S. Lang and J. Tate, On Chevalley’s proof of Lüroth’s theorem, Proc. Amer. Math. Soc. 3 (1952), 621–624.MathSciNetMATHGoogle Scholar
  21. [M]
    R. E. MacRae, On rational points on conics, Proc. Amer. Math. Soc. 67 (1977), 38–40.MathSciNetMATHCrossRefGoogle Scholar
  22. [MS]
    R. E. MacRae and P. Samuel, Subfields of index 2 of elliptic function fields, Conference on commutative algebra, Lawrence, Kansas 1972, 171–193; Lecture notes in math. 311, Springer, Berlin, 1973.Google Scholar
  23. [MT]
    Yu. I. Manin and M. A. Tsfasman, Rational varieties: algebra, geom­etry and arithmetic, Russian Math. Surveys 41:2 (1986), 51–114.MathSciNetMATHCrossRefGoogle Scholar
  24. [MH]
    T. T. Moh and W. Heinzer, On the Lüroth semigroup and Weier-strass canonical divisors, J. of Algebra 77 (1982), 62–73.MathSciNetMATHCrossRefGoogle Scholar
  25. [Mo]
    L. Moret-Bailly, Variétés stablement rationnelles non rationnelles, Sem. Bourbaki, 1984–85, no. 643, 14 pp.Google Scholar
  26. [N1]
    M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85–91.MathSciNetMATHGoogle Scholar
  27. [N2]
    M. Nagata, Field theory, Dekker, New York, 1977.MATHGoogle Scholar
  28. [O]
    J. Ohm, On ruled fields, Sém. de théorie des nombres, Univ. Bordeaux 1 (1988–1989), 27–49.MathSciNetMATHCrossRefGoogle Scholar
  29. [R]
    L. Roberts, K1 of a curve of genus zero, Trans. Amer. Math. Soc. 188 (1974), 319–324.MathSciNetMATHGoogle Scholar
  30. [Sa1]
    P. Samuel, Some remarks on Lüroth’s theorem, Memoirs of College of Sci. of Univ. of Kyoto 27 (1953), 223–224.MathSciNetMATHGoogle Scholar
  31. [Sa2]
    P. Samuel, Lectures on old and new results on algebraic curves, Tata Institute, Bombay, 1964.Google Scholar
  32. [Sa3]
    P. Samuel, Algebraic theory of numbers, Hermann, Paris, 1970.MATHGoogle Scholar
  33. [S]
    B. Segre, Sur un problem de M. Zariski, Coll. international d’algebre et de theorie des nombres (Paris, 1949) 135–138, C. N. R. S., Paris, 1950.Google Scholar
  34. [Se1]
    J. -P. Serre, A course in arithmetic, Springer, New York, 1973.MATHGoogle Scholar
  35. [Se2]
    J.-P. Serre, Local fields, Springer, New York, 1979.MATHGoogle Scholar
  36. [Su]
    A. A. Suslin, The quaternion homomorphism for the function field on a conic, Soviet Math. Doklady 26 (1982), 72–77.MATHGoogle Scholar
  37. [SW]
    R. Swan, Noether’s problem in galois theory; Emmy Noether in Bryn Mawr (B. Srinivasan and J. Sally, editors), Springer, 1983, pp. 21–40.Google Scholar
  38. [T]
    J. Tate, Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400–404.MathSciNetMATHCrossRefGoogle Scholar
  39. [vdW]
    B. L. van der Waerden, Modem algebra I, Unger, New York, 1949.Google Scholar
  40. [W]
    A. Wadsworth, Merkurjev’s elementary proof of Merkurjev’s theorem, Contempory Math. Vol. 55, Part II (1986), 741–774.MathSciNetGoogle Scholar
  41. [W1]
    A. Wadsworth, Letter, May 6, 1990.Google Scholar
  42. [W2]
    A. Wadsworth, Similarity of quadratic forms and isomorphism of their function fields, Trans. Amer. Math. Soc. 208 (1975), 352–358MathSciNetMATHCrossRefGoogle Scholar
  43. [Wa]
    W. Waterhouse, The structure of inseparable field extensions, Trans. Function Fields of Conies, a Theorem, & a Problem 363 Amer. Math. Soc. 211 (1975), 39–54.MathSciNetMATHGoogle Scholar
  44. [We]
    A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Pub. 29, Providence, 1962.Google Scholar
  45. [ZSI]
    O. Zariski and P. Samuel, Commutative algebra, vol. I, van Nostrand, Princeton, 1955.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Jack Ohm

There are no affiliations available

Personalised recommendations