A Hierarchical Bayesian Analysis of Circular Data with Autoregressive Errors: Modeling the Mechanical Properties of Cortical Bone

  • M. Peruggia
  • T. J. Santner
  • Y-Y. Ho
  • N. J. McMillan
Conference paper

Abstract

We study a hierarchical model for circular data with covariate information. The model for the data given the first stage parameters is based on a finite Fourier series expansion of the conditional mean level for each circular curve. The dependence of the response on the covariates is incorporated through a linear regression of the parameters on the covariates. The within curve dependence is accounted for by an autoregressive error structure. In the second and subsequent stages, a hierarchical Bayes structure is imposed on the parameters of the expansion.

We use the model to analyze a set of observational data consisting of CAT scans of cross-sections of human femurs at the lesser trochanter from a group of patients admitted to the Hospital for Special Surgery in New York City. Two responses are considered: the thickness of the cortical bone from a series of equi-angular rays through the centroid of the section, and the components of the area moment of inertia about the bone’s major principal axis. The latter provide a measure of the bone’s mechanical properties under loading. We relate these curves to each subject’s age, gender, and diagnosis. Marginal posterior distributions of the model parameters and predictive distributions of future observations are estimated using the Gibbs Sampler and displayed graphically. The sensitivity of the conclusions to the modeling assumptions is assessed. The necessity of interplay between the computationally rather simple classical methods and the computationally intensive Bayesian methods is stressed.

Keywords

Arthritis Covariance Osteoarthritis Autocorrelation Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batschelet, E. (1981). Circular Statistics in Biology. Academic Press, New York.MATHGoogle Scholar
  2. Berger. J. O. (1985). Statistical Decision Theory and Bayesian Analysis. ( 2nd edition ), Springer Verlag, New York.MATHGoogle Scholar
  3. Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.MATHGoogle Scholar
  4. Bloomfield, P. (1976). Fourier Analysis of Time Series: An Introduction. John Wiley, New York.MATHGoogle Scholar
  5. Friedman, J. H. (1987). Exploratory projection pursuit. J. Am. Statis. Assoc. 82, 249–266.MATHCrossRefGoogle Scholar
  6. Gelfand, A., Hills, S., Racine, R-P., and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Am. Statis. Assoc. 85,972–985.CrossRefGoogle Scholar
  7. Gelfand, A. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. J. Am. Statis. Assoc. 85, 398–409.MathSciNetMATHCrossRefGoogle Scholar
  8. Gelman, A. and Rubin, D. (1991). A single series from the Gibbs sampler provides a false sense of security. Technical Report No. 305. Department of Statistics, University of California at Berkeley.Google Scholar
  9. Geyer, C. (1992). A practical guide to Markov chain Monte Carlo. Preprint. School of Statistics, University of Minnesota.Google Scholar
  10. Guttman I. and Pena D. (1988). Outliers and influence: evaluation by posteriors of parameters in the linear model. Bayesian Statistics 3, 631–640.Google Scholar
  11. Johnson W. and Geisser S. (1983). A predictive view of the detection and characterization of influential observations in regression analysis. J. Am. Statist. Assoc. 137–144.Google Scholar
  12. Lovejoy, C., Burstein, A. H. and Kingsbury, G. (1976). The biomechanical analysis of bone strength: a method and its application to platycnemia. Am. J. Anthrop. 4, 489–506.CrossRefGoogle Scholar
  13. McCulloch, R. and Tsay, R. (1991). Bayesian analysis of autoregressive time series via the Gibbs sampler. Preprint, Graduate School of Business, University of Chicago.Google Scholar
  14. Olshen, R. A., Biden, E. N., Wyatt, M. P. and Sutherland, D. H. (1989). Gait analysis and the bootstrap. Ann. Statist. 17, 1419–1440.MathSciNetMATHCrossRefGoogle Scholar
  15. Pettit L. I. (1986). Diagnostics in Bayesian model choice. The Statistician 35, 183–190.CrossRefGoogle Scholar
  16. Pettit L. I. and Smith A. F. M. (1985). Outlier and influential observations in linear models. in Bayesian Statistics 2, 473–494.Google Scholar
  17. Peruggia, M., Santner, T., Ho, Y-Y. and McMillan, N. (1992). Hierarchical Bayes analysis of circular data with autoregressive errors: modeling the mechanical properties of cortical bone. Technical Report No. 493. Department of Statistics, The Ohio State University.Google Scholar
  18. Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. Roy. Statist. Soc. Ser. B. 53, 233–244.MathSciNetMATHGoogle Scholar
  19. Ritter, C., and Tanner, M. A. (1992). Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy-Gibbs sampler. J. Am. Statis. Assoc. 87, 861–868.CrossRefGoogle Scholar
  20. Sutherland, D. H., Olshen, R. A., Biden, E. and Wyatt, M. (1988). The Development of Mature Walking. Mac Keith Press, London.Google Scholar
  21. Tanner, M. A. (1991). Tools for Statistical Inference. Springer-Verlag, New York.MATHGoogle Scholar
  22. Smith, A. F. M. (1991). Private Communication.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • M. Peruggia
    • 1
  • T. J. Santner
    • 1
  • Y-Y. Ho
    • 1
  • N. J. McMillan
    • 1
  1. 1.The Ohio State UniversityUSA

Personalised recommendations