Advertisement

Neuroendocrine—Thymus Interactions During Development and Aging

  • Nicola Fabris
Part of the Endocrinology and Metabolism book series (EAM, volume 7)

Abstract

A good body of experimental evidences now supports the existence of numerous interactions among the nervous, endocrine, and immune systems. Communication between these networks is regulated by mediator substances, such as hormones, neurotransmitters, and immune-derived cytokines, which are to a large extent shared by the different homeostatic systems. In addition, receptor sites, sensitive to such signals are common to nervous, neuroendocrine, and immune cells (for review see1,4).

Keywords

Growth Hormone Natural Killer Cell Thymic Epithelial Cell Dwarf Mouse Thymic Involution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fabris N, Mocchegiani E, Muzzioli M, Provinciali M. Neuroendocrine- thymus interactions: Perspectives for intervention in aging. Ann NY Acad Sci USA 1988; 521: 72 – 87.CrossRefGoogle Scholar
  2. 2.
    Bulloch K, Lucito R. The effect of cortisone on acetylcholenesterase (AChE) in the neonatal and aged thymus. Ann NY Acad Sci USA 1988; 521: 59 – 71.CrossRefGoogle Scholar
  3. 3.
    Blalock JE. Production of neuroendocrine peptide hormones by the immune system. In: Blalock JE, Bost KL, eds. Neuroimmunendocrinology. Progress in Allergy, vol. 43, Basel: Karger; 1988: 1 – 13.Google Scholar
  4. 4.
    Besedovsky HO, Del Rey A. Immune-neuroendocrine circuits: Integrative role of cytokines. Front Neuroendocrinology 1992; 13 (1): 61 – 94.Google Scholar
  5. 5.
    Pierpaoli W, Fabris N, Sorkin E. Developmental hormones and immunological maturation. In: Wolstenholme GEW, Knight J, eds. Hormones and the Immune Response. (Ciba study group No. 36 ) London: Churchill; 1970: 126 – 143.Google Scholar
  6. 6.
    Besedovsky HO, Sorkin E. Thymus involvement in female sexual maturation. Nature 1974; 249: 356 – 358.PubMedCrossRefGoogle Scholar
  7. 7.
    Besedovsky HO, Sorkin E, Keller M. Changes in blood hormone levels during the immune response. Proc Soc Exp Med 1975; 50: 466 – 502.Google Scholar
  8. 8.
    Bernton EW, Beach JE, Holaday JW, Smallridge R, Fein HG. Release of multiple hormones by a direct action of interleukin 1 on pituitary cells. Science 1987; 238: 519 – 525.PubMedCrossRefGoogle Scholar
  9. 9.
    Spangelo BL, Judd AM, Ross PC, Login IS, Jarvis WD, Badamchian M, Goldstein AL, MacLeod RM. Thymosin fraction 5 stimulates prolactin and growth hormone release from anterior pituitary cells in vitro. Endocrinology 1987; 121: 2035 – 2040.PubMedCrossRefGoogle Scholar
  10. 10.
    Fabris N. Biomarkers of aging in the neuroendocrine-immune domain: Time for a new theory of aging. Ann NY Acad Sci 1992; 663: 335 – 348.PubMedCrossRefGoogle Scholar
  11. 11.
    Meites J, Goya R, Takahashi S. Why the neuroendocrine system is important in aging processes. A review. Exp Gerontol 1986; 22: 1 – 15.CrossRefGoogle Scholar
  12. 12.
    Grossman CJ. The role of sex steriods in immune system regulation. In: Grossman CJ, ed. Bilateral Communication Between the Endocrine and Immune Systems. New York: Springer-Verlag; 1993.Google Scholar
  13. 13.
    Fabris N, Pierpaoli W, Sorkin E. Hormones and the immunological capacity. III. The immunodeficiency diseases of the hypopituitary Snell-Bagg dwarf mouse. Clin Exp Immunol 1971; 9: 209 – 225.PubMedGoogle Scholar
  14. 14.
    Fabris N, Pierpaoli W, Sorkin E. Lymphocytes, hormones, and aging. Nature 1972; 240: 557 – 559.PubMedCrossRefGoogle Scholar
  15. 15.
    Pierpaoli W, Sorkin E. Alteration of adrenal cortex and thyroid in mice with congenital absence of the thymus. Nature N Biol 1972; 238: 282 – 286.CrossRefGoogle Scholar
  16. 16.
    Baroni CD, Fabris N, Bertoli G. Synergistic action of thyroxin and somatotropic hormone in pituitary dwarf mice. Immunology 1969; 17: 303 – 306.PubMedGoogle Scholar
  17. 17.
    Fabris N, Pierpaoli W, Sorkin E. Hormones and the immunological capacity. IV. Restorative effects of developmental hormones or of lymphocytes on the immunodeficiency syndrome of the dwarf mouse. Clin Exp Immunol 1971; 9: 227 – 240.PubMedGoogle Scholar
  18. 18.
    Roth JA, Lamax LG, Alszuler N, Hampshire J, Laeberle ML, Shelton M, Draper DD, Ledet AE. Thymic abnormatilities and growth hormone deficiency in dogs. Am J Vet Res 1980; 41: 1256 – 1262.PubMedGoogle Scholar
  19. 19.
    Roth JA, Laeberle ML, Grier DL, Hopper JG, Spiegel HE, Macallister HA. Improvement in clinical condition and thymus morphological features associated with growth treatment of immuno-deficient dwarf-dogs. Am J Vet Res 1984; 45: 1151 – 1155.PubMedGoogle Scholar
  20. 20.
    Dung HC. Deficiency in the thymus-dependent immunity in ‘lethargic’ mutant mice. Transplantation 1977; 23: 39 – 44.PubMedCrossRefGoogle Scholar
  21. 21.
    Fabris N. Ontogenetic and phylogenetic aspects of neuroendocrine-immune network. Dev Comp Immunol 1981; 5: 49 - 60.CrossRefGoogle Scholar
  22. 22.
    Fabris N, Piantanelli L. Thymus-neuroendocrine interactions during development and aging. In: Adelman RC, Roth GS, eds. Endocrine and Neuroend Mechanics of Aging. ( CRC Press Series) Boca Raton, Florida; 1982: 186 – 195.Google Scholar
  23. 23.
    Provinciali M, Fabris N. Models and mechanism of neuroendocrine-immune interactions during ontogeny. Adv Neuroimmunol 1991; 1: 124 – 138.CrossRefGoogle Scholar
  24. 24.
    Bach JF, Dardenne M, Pleau JM, Bach AM. Isolation, biochemical characteristics, and biological activity of a circulating thymic hormone in the mouse and in the human. Ann NY Acad Sci 1975; 249: 186 – 191.PubMedCrossRefGoogle Scholar
  25. 25.
    Dardenne M, Pleau JM, Nabama B, Lefancier P, Denien M, Choay J, Bach JF. Contribution of zinc and other metals to the biological activity of the serum thymic factor. Proc Natl Acad Sci USA 1982; 79: 5370 – 5373.PubMedCrossRefGoogle Scholar
  26. 26.
    Fabris N, Mocchegiani E. Endocrine control of thymic serum factor production in young-adult and old mice. Cell Immunol 1985; 91: 325 – 335.PubMedCrossRefGoogle Scholar
  27. 27.
    Fabris N, Mocchegiani E, Muzzioli M, Imberti R. Thymus-neuroendocrine network. In: Fabris N, Garaci E, Hadden J, Mitchison NA, eds. Immunore- gulation. New York: Plenum Press; 1983: 341 – 362.Google Scholar
  28. 28.
    Mocchegiani E, Paolucci P, Balsamo A, Cacciari E, Fabris N. Influence of growth hormone on thymic endocrine activity in humans. Horm Res 1990; 33: 248 – 255.PubMedCrossRefGoogle Scholar
  29. 29.
    Fabris N, Mocchegiani E, Mariotti S, Pacini F, Pinchera A. Thyroid function modulates thymus endocrine activity. J Clin Endocrinol Metab 1986; 62: 474 – 478.PubMedCrossRefGoogle Scholar
  30. 30.
    Fabris N, Mocchegiani E, Mariotti S, Caramia G, Bracilli T, Pacini F, Pinchera A. Thymulin deficiency and low 3,5,3’-triiodothyronine syndrome in infants with low birth weight syndromes. J Clin Endocrinol Metab 1987; 65: 247 - 253.PubMedCrossRefGoogle Scholar
  31. 31.
    Mocchegiani E, Fabris N. Growth hormone influence on thymic endocrine activity in humans. Int J Neurosci 1990; 51: 253 – 254.PubMedCrossRefGoogle Scholar
  32. 32.
    Mocchegiani E, Boemi M, Fumelli P, Fabris N. Zinc-dependent low thymic hormone level in type I diabetes. Diabetes 1989; 38 (7): 932 – 937.PubMedCrossRefGoogle Scholar
  33. 33.
    Fabris N. Immunodepression in thyroid-deprived animals. Clin Exp Immunol 1973; 15: 601 - 609.PubMedGoogle Scholar
  34. 34.
    Pierpaoli W, Fabris N, Sorkin E. The effects of hormones in the development of the immune capacity. In: Cellular Interactions in the Immune Response. Basel: Karger; 1971: 25 – 29.Google Scholar
  35. 35.
    Glick B. The bursa of Fabricius and the development of immunologic competence. In: Good RA, Gabrielson AE, eds. The thymus in Immunobiology. New York: Hoeber Medical Division, Harper and Row; 1964: 343 – 360.Google Scholar
  36. 36.
    Kalland T, Strand O, Forsberg JG. Long-term effects of neonatal estrogen treatment on mitogen responsiveness of mouse spleen lymphocytes. J Natl Cancer Inst 1979; 63: 413 – 421.PubMedGoogle Scholar
  37. 37.
    Roubinian JR, Tala N, Greenspan JS, Goodman JR, Siteri PK. Effect of castration and sex hormone treatment on survival, antinucleic acid antibodies, and glomerulonephritis in NZB/NZW Fx mice. J Exp Med 1978; 147: 1568 – 1583.PubMedCrossRefGoogle Scholar
  38. 38.
    Steinberg AD, Melez KA, Raveche ES, Reeves JP, Boegel WA, Smathers PA, Taurog JD, Weinlein L, Duvic M. Approach to the study of the role of sex hormones in autoimmunity. Arthritis Rheum 1979; 22: 1170 – 1176.PubMedCrossRefGoogle Scholar
  39. 39.
    Koo GB, Manyak CL. Generation of cytotoxic cells from murine bone marrow by human recombinant IL-2. J Immunol 1986; 137: 1751 – 1756.PubMedGoogle Scholar
  40. 40.
    Kalland T. Generation of Natural killer cells from bone marrow precursors in vitro. Immunology 1986; 57: 493 – 497.PubMedGoogle Scholar
  41. 41.
    Provinciali M, Muzzioli M, Fabris N. Timing of appearance and disappearance of IFN and IL-2 induced natural immunity during ontogenetic development and aging. Exp Gerontology 1989; 24: 227 – 236.CrossRefGoogle Scholar
  42. 42.
    Provinciali M, Fabris N. Modulation of lymphoid cell sensitivity to interferon by thyroid hormones. J Endocrinol Invest 1990; 13: 187 – 191.PubMedGoogle Scholar
  43. 43.
    Provinciali M, Muzzioli M, Di Stefano G, Fabris N. Recovery of spleen cell natural killer activity by thyroid hormone treatment in old mice. Nat Immun Cell Growth Regul, 1991; 10: 226 – 236.PubMedGoogle Scholar
  44. 44.
    Pierpaoli W, Kopp HG, Bianchi E. Interdependence of thymic and neuroendocrine functions in ontogeny. Clin Exp Immunol 1976; 24: 501 – 506.PubMedGoogle Scholar
  45. 45.
    Nishizuka Y, Sakakura T. Thymus and reproduction sex-linked dysgenesis of the gonad after neonatal thymectomy in mice. Science 1969; 166: 753 – 756.PubMedCrossRefGoogle Scholar
  46. 46.
    Piantanelli L, Basso A, Muzzioli M, Fabris N. Thymus-dependent reversibility of physiological and Isoproterenol-evoked age-related parameters in athymic nude and old normal mice. Mech Ageing Dev 1978; 7: 171 – 179.PubMedCrossRefGoogle Scholar
  47. 47.
    Piantanelli L, Gentile S, Fattoretti P, Viticchi C. Thymic regulation of brain cortex beta-adrenoceptors during development and aging. Arch Gerontol Ger 1985; 4: 179 – 185.CrossRefGoogle Scholar
  48. 48.
    Meites J, ed. Neuroendocrinology of Aging. New York: Plenum Press; 1983.Google Scholar
  49. 49.
    Sowers JR, Felicetta JV, eds. Endocrinology of Aging. New York: Raven Press; 1988: 1 – 348.Google Scholar
  50. 50.
    Van Coevorden A, Mockel J, Laurent E, Kerkhofs M, L’Hermite-Baleriaux M, Decoster C, Neve P, Van Cauter E. Neuroendocrine rhythms and sleep in aging men. Am Physiol Soc 1991; 51 – 63.Google Scholar
  51. 51.
    Reiter RJ. The pineal gland: An important link to the environment. N Physiol Sci 1986; 1: 202 – 205.Google Scholar
  52. 52.
    Muller-Hermelink HK, Steinman G, Stein H. Structural and functional alteration of the aging human thymus. Adv Exp Med Biol 1984; 17: 142.Google Scholar
  53. 53.
    Simpson JF, Gray ES, Beck JS. Age involution in the normal human adult thymus. Clin Exp Immunol 1975; 19: 261 – 268.PubMedGoogle Scholar
  54. 54.
    Savino W, Dardenne M. Thymic hormone-containing cells. VI. Immuno- histologic evidence for the simultaneous presence of thymulin, thymopoietin, and thymosin alpha 1 in normal and pathological human thymuses. Eur J Immunol 1984; 14: 987 – 991.PubMedCrossRefGoogle Scholar
  55. 55.
    Meleg-Smith SN, Ossa-Gomez LJ. A quantitative histologic comparison of the thymus in 100 healthy and diseased adults. Am J Clin Pathol 1981; 76: 657 – 662.Google Scholar
  56. 56.
    Steinmann GG, Klaus B, Muller-Hermelink HK. The involution of aging human thymic epithelium is independent of puberty. Scand J Immunol 1985; 22: 536 – 575.CrossRefGoogle Scholar
  57. 57.
    Korenchevski V. Physiological and pathological aging. In: Bourne GH, ed. New York: Hafner; 1961: 65.Google Scholar
  58. 58.
    Hammar JA. Die normal morphologische Thymusforschung im letzten Vierteljahrhundert. Leipzig: Barth; 1936.Google Scholar
  59. 59.
    Moore RW. Unpublished observations, cited by Good RA in discussion. In: Wolstenholme GEW, Porter R, eds. The Thymus: Experimental and Clinical Studies. Boston: Little Brown and Co.; 1966: 179 – 181.Google Scholar
  60. 60.
    Fabris N, Mocchegiani E, Amadio L, Zannotti M, Licastro F, Franceschi C. Thymic hormone deficiency in normal ageing and Down’s syndrome. Is there a primary failure of the thymus? Lancet 1984; 1: 983 – 986.PubMedCrossRefGoogle Scholar
  61. 61.
    Zatz MM, Goldstein AL. Thymosin, lymphokines, and the immunology of ageing. Gerontology 1985; 31: 263 – 272.PubMedCrossRefGoogle Scholar
  62. 62.
    Bach MA, Beaurain G. Respective influence of extrinsic and intrinsic factors on the age-related decrease of thymic secretion. J Immunol 1979; 122: 2505 – 2507.PubMedGoogle Scholar
  63. 63.
    Fabris N, Muzzioli M, Mocchegiani E. Recovery of age-dependent immunological deterioration in Balb/c mice by short term treatment with L-thyroxine. Mech Ageing Dev 1982; 18: 327 – 343.PubMedCrossRefGoogle Scholar
  64. 64.
    Davila DR, Brief S, Simon J, Hammer RE, Brinster RL, Kelly KW. Role of growth hormone in regulating T-dependent immune events in aged, nude, and transgenic rodents. J Neurosci Res 1987; 18: 108 – 116.PubMedCrossRefGoogle Scholar
  65. 65.
    Goff BL, Roth JA, Arp LH, Incefy GS. Growth hormone treatment stimulates thymulin production in aged dogs. Clin Exp Immunol 1987; 68: 580 – 587.PubMedGoogle Scholar
  66. 66.
    Greenstein BD, Fitzpatrick FT, Kendall MD, Wheeler MJ. Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J Endocrinol 1987; 11: 345 – 350.CrossRefGoogle Scholar
  67. 67.
    Marchetti B, Morale MC, Batticane N, Gallo F, Farinelli Z, Cioni M. Aging of the reproductive-neuroimmune axis. Ann NY Acad Sci 1991; 621: 159 – 173.PubMedCrossRefGoogle Scholar
  68. 68.
    Pierpaoli W, Dall’ara A, Pedrinis E, Regelson W. The pineal control of aging. The pineal control of aging. The effects of melatonin and pineal grafting on the survival of older mice. Ann NY Acad Sci 1991; 621: 291 – 313.PubMedCrossRefGoogle Scholar
  69. 69.
    Fabris N, Mocchegiani E, Muzzioli M. Recovery of age related decline of thymic endocrine activity and PHA response by lysine-arginine combination. Int J Immunopharmacol 1986; 8: 677 – 685.PubMedCrossRefGoogle Scholar
  70. 70.
    Fabris N, Mocchegiani E, Muzzioli M, Provinciali M. The role of zinc in neuroendocrine-immune interactions during aging. Ann NY Acad Sci 1991; 621: 314 – 326.PubMedCrossRefGoogle Scholar
  71. 71.
    Licastro F, Mocchegiani E, Zannotti M, Fabris N. Normalisation of thyroid stimulating hormone and reversal triiodothyronine plasmic levels by dietary zinc supplementation in children with Down’s syndrome: Evaluation of clinical impact. Int J Neurosci 1992; 65: 259 – 268.Google Scholar
  72. 72.
    Mocchegiani E, Cacciatore L, Talarico M, Lingetti M, Fabris N. Recovery of low thymic hormone levels in cancer patients by lisine-arginine combination. Int J Immunopharmacol 1990; 12 (4): 365 – 371.PubMedCrossRefGoogle Scholar
  73. 73.
    Travaglini P, Moriondo P, Togni E, Venegoni P, Bochicchio D, Conti A, Faglia G, Ambroso G, Ponticelli C, Mocchegiani E, Fabris N. Effect of an oral zinc administration on prolactin and thymulin circulating levels in uremic patients. J Clin Endocrinol Metab 1989; 68 (1): 186 – 190.PubMedCrossRefGoogle Scholar
  74. 74.
    Simpson JC, Gray ES, Michie W, Beck JS. The influence of preoperative drug treatment on the extent of hyperplasia of the thymus in primary thyrotoxicosis. Clin Exp Immunol 1975; 22: 249 – 253.PubMedGoogle Scholar
  75. 75.
    Travaglini P, Mocchegiani E, Togni E, Muratori M, Re T, Bazzoni, Fabris N. Thymulin and zinc circulating level in patient with GH- and PRL-secreting pituitary adenomas. Int J Neurosci 1990; 51: 269 – 271.Google Scholar
  76. 76.
    Solomon GF, Fiatarone MA, Benton D, Morley JE, Bloom E, Makinodan T. Psychoimmunologic and endorphin function in the aged. Ann NY Acad Sci 1988; 521: 43 – 58.PubMedCrossRefGoogle Scholar
  77. 77.
    Provinciali M, Fabris N. Role of pituitary-thyroid axis on basal and lymphokine-induced NK cell activity in aging. Int J Neurosci 1990; 51: 273 – 274.PubMedCrossRefGoogle Scholar
  78. 78.
    Provinciali M, Di Stefano G, Bressani N, Fabris N. Sequential activation of hormone/cytokines in the differentiation of NK cells. J Chemother 1991; 3: 81 – 83.Google Scholar
  79. 79.
    Pieri C, Giuli C, Del Moro M, Piantanelli L. Electron microscopic morphometric analysis of mouse liver. II. Effect of aging and thymus transplantation in old animals. Mech Aging Dev 1980; 13: 275 – 280.PubMedCrossRefGoogle Scholar
  80. 80.
    Hienstand PC, Mekler P, Nordmann R, Grieder A, Permmongkol C. Prolactin as a modulator of lymphocyte responsiveness provides a possible mechanism of action for cyclosporine. Proc Natl Acad Sci USA 1986; 83: 335 – 340.Google Scholar
  81. 81.
    Marchetti B, Morale MC, Pelletier G. Autoradiographic localization of the beta-2 adrenergic receptor in the thymus and presence of a sexual dimorphism during ontogeny, Progress in NeuroEndocrinlmmunology (PNEI), 1990; 3(2):103–115.Google Scholar
  82. 82.
    Arrenbrecht S, Sorkin E. Growth hormone-induced T cell differentiation. Eur J Immunol 1973; 3: 601 – 604.PubMedCrossRefGoogle Scholar
  83. 83.
    Lemarchand-Beraud T. Triiodothyronine and thyroxine nuclear receptors in lymphocytes from normal, hyper-, and hypothyroid patients. Acta Endocrinol 1977; 85: 44 – 51.PubMedGoogle Scholar
  84. 84.
    Wybran J. Enkephalins and endorphins as modifiers of the immune system: Present and future. Neuropeptides 1985; 44: 92 – 94.Google Scholar
  85. 85.
    Dardenne M, Savino W. Hormonal interactions between the thymus and the pituitary. In: Grossman CJ, ed. Bilateral Communication Between the Endocrine and Immune Systems. New York: Springer-Verlag; 1993.Google Scholar
  86. 86.
    Mocchegiani E, Amadio L, Fabris N. Neuroendocrine-thymus interactions. I. In vitro modulation of thymic factor secretion by thyroid hormones. J Endocrinol Invest 1990; 13: 139 – 147.PubMedGoogle Scholar
  87. 87.
    Geenen V, Legros JJ, Franchimont P, Baudrihaye M, Defresnse MP, Boniver J. The neuroendocrine thymus: Coexistence of oxytocin and neuro- physin in the human thymus. Science, 1986; 232: 508 – 510.PubMedCrossRefGoogle Scholar
  88. 88.
    Geenen V, Defrense MP, Robert F, Legros JJ, Franchimont P, Boniver J. Immunocytochemical evidence that thymic nurse cells are neuroendocrine cells. Neuroendocrinology 1988; 47: 365 – 368.PubMedCrossRefGoogle Scholar
  89. 89.
    Geenen V, Robert F, Martens H, Benhida A, De Giovanni G, Defrense MP, Boniver J, Legros JJ, Martial J, Franchimont P. Biosynthesis and paracrine/cryptocrine actions of ’self’ neurohypophysial-related peptides in the thymus. Mol Cell Endocrinol 1991; 76: C27 – C31.PubMedCrossRefGoogle Scholar
  90. 90.
    Johnson HM, Ferrar WL, Torres BA. Vasopressin replacement of interleukin- 2 requirement in gamma-interferon production: Lymphokine activity of a neuroendocrine hormone. J Immunol 1982; 129: 983 – 986.PubMedGoogle Scholar
  91. 91.
    Ceredig R, Lowenthal JW, Nahholz M, MacDonald HR. Expression of interleukin-2 receptors as a differentiation marker. Nature 1985; 314: 98 – 100.PubMedCrossRefGoogle Scholar
  92. 92.
    Hadden JW, Galy A, Chen H, Wang Y, Hadden E. The hormonal regulation of thymus and T lymphocyte development and function. In: Hadden JW, Masek K, Nistico G, eds. Interactions Among CNS, Neuroendocrine, and Immune Systems. Rome-Milan: Pytagora Press; 1989: 147 – 174.Google Scholar
  93. 93.
    Deschaux P, Massengo B, Fontanges R. Endocrine interaction of the thymus with the hypophysis, adrenals, and testes: Effect of two thymic extracts. Thymus 1979; 1: 95 – 100.PubMedGoogle Scholar
  94. 94.
    Hall NRS, O’Grady MP, Farah JM Jr. Activation of the hypothalamic- pituitary-adrenal axis by thymic peptides. In: Hadden JW, Masek K, Nistico G, eds. Interactions Among CNS, Neuroendocrine, and Immune Systems. Rome-Milan: Pythagora Press; 198:114–125.Google Scholar
  95. 95.
    Walford RL. The Immunological Theory of Aging. Copenhagen: Munksgaard; 1969.Google Scholar
  96. 96.
    Burnet FM. An immunological approach to aging. Lancet 1970; ii: 358–360.Google Scholar
  97. 97.
    Frolkis W. Aging and life prolonging process. Vienna, New York: Springer- Verlag; 1982.Google Scholar
  98. 98.
    Prasad AS. Clinical, endocrinological and biochemical effects of zinc deficiency. Clin Endocrinol Metab 1985; 14 (3): 567 – 589.PubMedCrossRefGoogle Scholar
  99. 99.
    Turnlund JR, Durvin N, Costa F, Margen S. Stable isotope studies of zinc absorption and retention in young and elderly men. J Nutr 1986; 116 (7): 1239 – 1247.PubMedGoogle Scholar
  100. 100.
    Fabris N, Muzzioli M, Mocchegiani E. Recovery of age-dependent immunological deterioration in Balb/c mice by short-term treatment with L-thyroxine. Mech Aging Dev 1982; 18: 327 – 338.PubMedCrossRefGoogle Scholar
  101. 101.
    Giuli C, Pieri C, Piantanelli L, Fabris N. Electron-microscopic morpho- metric analysis of mouse liver. I. Experimental studies on the morphogenetic significance of the thymus in nude and normal mice. Mech Ageing Dev 1980; 13: 265 - 272.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • Nicola Fabris

There are no affiliations available

Personalised recommendations