Skip to main content

Phosphoenolpyruvate Carboxylase: Allosteric Regulation at the Ecosystem Level by Dissolved Organic Matter

  • Chapter
  • 100 Accesses

Part of the book series: Ecological Studies ((ECOLSTUD,volume 105))

Abstract

In natural unpolluted aquatic ecosystems the carbon sources that are available for heterotrophic microbial life are limited. Readily utilizable dissolved organic matter (UDOM) is present only in very small amounts with a high substrate diversity, and frequently the supply is discontinuous (Münster and Chróst 1990; Chapter 2, this volume). The qualitative and quantitative composition and metabolic activity of heterotrophic bacterial assemblages in aquatic ecosystems is to a great extent determined by the availability of DOM, although abiotic factors are also important. Because of the fundamental significance of dissolved organic substrates, very effective and rapid regulatory mechanisms that enable bacteria within a genetically determined range to adapt continuously to different and often growth-limiting levels of DOM are to be expected. Compared with the very beginning of aquatic microbiology in the early 1960s, adequate methods for measurements of activity and production of aquatic bacteria are now available. The different “activities” we are measuring are the expression of catabolic (production of low-molecular-weight intermediates and energy) and anabolic (biosynthetic) pathways (production of biomass). Behind the data stands the bacterial metabolism with its adaptive capabilities for life and survival in continuously changing environments (e.g., substrate, temperature, diurnal cycles, pressure). However, our knowledge of regulatory properties of enzymes of ecological importance in aquatic bacteria is very limited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohnert HJ, Vornon DM, DeRocher EJ, Michalowski CB, Cushman JC (1992) Biochemistry and molecular biology of CAM. In Wray JL (ed) Inducible Plant Proteins: Their Biochemistry and Molecular Biology. Cambridge University Press, Cambridge, pp 113–137.

    Chapter  Google Scholar 

  • Gottschalk G (1988) Bacterial Metabolism. Springer-Verlag, New York

    Google Scholar 

  • Hecker M, Babel W (eds) (1988) Physiologie der Mikroorganismen. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Hochachka PW, Somero GN (1973) Strategies of Biochemical Adaptation. WB Saunders, Philadelphia

    Google Scholar 

  • Hsie AW, Rickenberg HV (1966) A mutant of Escherichia coli deficient in phosphoenolpyruvate carboxykinase activity. Biochim Biophys Res Commun 25:676–683

    Article  CAS  Google Scholar 

  • Kluge M (1983) The role of phosphoenolpyruvate carboxylase in C4-photosynthesis and crassulacean acid metabolism. Physiol Veget 21:817–882

    CAS  Google Scholar 

  • Kornberg HL (1966) Anaplerotic sequences and their role in metabolism. In Campbell PN, Greville GD (eds) Essays in Biochemistry, vol 2. Academic Press, New York, pp 1–31

    Google Scholar 

  • Kusnetsov SJ, Romanenko WJ (1966) Produktion der Biomasse heterotropher Bakterien und die Geschwindigkeit ihrer Vermehrung im Rybinsk-Stausee. Verh Int Ver Limnol 16:1493–1500

    Google Scholar 

  • Latzko E, Kelly GJ (1983) The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol Veget 21:805–815

    CAS  Google Scholar 

  • Metzner H (1962) Papierchromatographische Trennung der Photosynthese-Intermediärprodukte. Naturwissenschaften 49:183

    Article  CAS  Google Scholar 

  • Münster U, Chróst RJ (1990) Origin, composition and utilization of dissolved organic matter. In Overbeck J, Chróst RJ (eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York, pp 8–46

    Google Scholar 

  • Nishikido T, Izui A, Iwatani H, Katsuki H, Tanaka S (1968) Control of carbon dioxide fixation in Escherichia coli by the compounds related to TCA cycle. J Biochem 63:532–541

    PubMed  CAS  Google Scholar 

  • O’Leary MH (1982) Phosphoenolpyruvate carboxylase: An enzymologist’s view. Annu Rev Plant Physiol 33:297–315

    Article  Google Scholar 

  • Overbeck J (1972) Experimentelle Untersuchungen zur Bestimmung der bakteriellen Produktion im See. Verh Int Ver Limnol 18:176–187

    Google Scholar 

  • Overbeck J (1979) Dark CO2 uptake—biochemical background and its relevance to in situ bacterial production. Arch Hydrobiol Beih Ergeb Limnol 12:38–47

    Google Scholar 

  • Overbeck J (1981) A new approach for estimating the overall heterotrophic activity in aquatic ecosystems. Verh Int Ver Limnol 21:1355–1358

    CAS  Google Scholar 

  • Overbeck J (1984) Application of TCA cycle metabolism for growth estimates of heterotrophic bacterioplankton. Arch Hydrobiol Beih Ergeb Limnol 19:23–36

    CAS  Google Scholar 

  • Overbeck J (1990) Aspects of aquatic microbial carbon metabolism: Regulation of phosphoenolpyruvate carboxylase. In Overbeck J, Chróst RJ (eds) Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York, pp 78–95

    Google Scholar 

  • Overbeck J, Daley RJ (1973) Some precautionary comments on the Romanenko technique for estimating heterotrophic bacterial production. Bull Ecol Res Commun 17:342–344

    Google Scholar 

  • Overbeck J, Sako Y (1989) Ecological aspects of enzyme regulation in aquatic bacteria. In Proceeding 5 th International Symposium on Microbial Ecology (ISME 5). Japan Scientific Societies Press, Kyoto, pp 378–382

    Google Scholar 

  • Romanenko VI (1964) Heterotrophic assimilation of CO2 by the bacterial aquatic flora. Mikrobiologiya 30:679–683

    Google Scholar 

  • Sorokin YI (1961) Role of chemosynthesis in production of organic substance in water reservoir. Investigation of chemosynthesis production in Kuibyshev Water Reservoir in 1958–1959. Mikrobiologiya 30:928–937

    CAS  Google Scholar 

  • Sorokin YI (1964) On the trophic role of chemosynthesis in water bodies. Int Rev Ges Hydrobiol 49:307–324

    Article  Google Scholar 

  • Splittstoesser WE (1966) Dark fixation and its role in the growth of plant tissue. Plant Physiol 41:755–759

    Article  PubMed  CAS  Google Scholar 

  • Stiborova M (1988) Phosphoenolpyruvate carboxylase: The key enzyme of C4-photosyn-thesis. Photosynthetica 22:240–263

    CAS  Google Scholar 

  • Utter MF, Kolenbrander HM (1972) Formation of oxaloacetate by CO2 fixation on phosphoenolpyruvate. In Boyer PD (ed) The Enzymes, vol 6. Academic Press, New York, pp 117–168

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Overbeck, J. (1994). Phosphoenolpyruvate Carboxylase: Allosteric Regulation at the Ecosystem Level by Dissolved Organic Matter. In: Overbeck, J., Chróst, R.J. (eds) Microbial Ecology of Lake Plußsee. Ecological Studies, vol 105. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2606-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2606-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7604-3

  • Online ISBN: 978-1-4612-2606-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics