Geometrie Flows for Image Processing

  • Guillermo Sapiro


Based on modern invariant theory and symmetry groups, a high- level way of defining invariant geometric flows for a given Lie group is first described in this work. We then analyze in more detail different subgroups of the projective group, which are of special interest for computer vision. We classify the corresponding invariant flows and show that the geometric heat flow is the simplest possible one. Results on invariant geometric flows of surfaces are presented in this paper as well. We then show how the planar curve flow obtained for the affine group can be used for geometric smoothing of planar shapes and edge preserving enhancement of MRI. We conclude the paper with the presentation of other applications of geometric flows in image processing, which include segmentation, anisotropic diffusion of color images, and contrast normalization.


Heat Flow Anisotropic Diffusion Planar Shape Differential Invariant Affine Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, “Axioms and fundamental equations of image processing, ” Arch. Rational Mechanics 123:3, September 1993.MathSciNetGoogle Scholar
  2. [2]
    L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion, ” SIAM J. Numer. Anal 29, pp. 845–866, 1992.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    S. Angenent, “Parabolic equations for curves on surfaces, Part II. Intersections, blow-up, and generalized solutions, ” Annals of Mathematics 133, pp. 171–215, 1991.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    S. Angenent, G. Sapiro, and A. Tannenbaum, “On the affine heat equation for nonconvex curves, ” TR, November 1994, submitted.Google Scholar
  5. [5]
    V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic snakes, ” HP Labs TR, September 1994.Google Scholar
  6. [6]
    W. Blaschke, Vorlesungenüber Differentialgeometrie II, Verlag Von Julius Springer, Berlin, 1923.MATHGoogle Scholar
  7. [7]
    Y. G. Chen, Y, Giga, and S. Goto, “Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, ” J. Differential Geometry 33, pp. 749–786, 1991.MathSciNetMATHGoogle Scholar
  8. [8]
    M. G. Crandall, H. Ishii, and P. L. Lions, “User’s guide to viscosity solutions of second order partial linear differential equations, ” Bulletin of the American Mathematical Society 27, pp. 1–67, 1992.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    C. L. Epstein and M. Gage, “The curve shortening flow, ” in Wave Motion: Theory, Modeling, and Computation, A. Chorin and A. Majda, Editors, Springer-Verlag, New York, 1987.Google Scholar
  10. [10]
    L. C. Evans and J. Spruck, “ Motion of level sets by mean curvature, I, ” J. Differential Geometry 33, pp. 635–681, 1991.MathSciNetMATHGoogle Scholar
  11. [11]
    O. Faugeras, “ On the evolution of simple curves of the real projective plane, ” Comptes rendus de lAcad. des Sciences de Paris 317, pp. 565–570, September 1993.MathSciNetMATHGoogle Scholar
  12. [12]
    M. Gage, “On an area-preserving evolution equation for plane curves, ” Contemporary Mathematics 51, pp. 51–62, 1986.MathSciNetGoogle Scholar
  13. [13]
    M. Gage and R. S. Hamilton, “The heat equation shrinking convex plane curves, ” J. Differential Geometry 23, pp. 69–96, 1986.MathSciNetMATHGoogle Scholar
  14. [14]
    M. Grayson, “The heat equation shrinks embedded plane curves to round points, ” J. Differential Geometry 26, pp. 285–314, 1987.MathSciNetMATHGoogle Scholar
  15. [15]
    H. W. Guggenheimer, Differential Geometry, McGraw-Hill Book Company, New York, 1963.MATHGoogle Scholar
  16. [16]
    B. K. P. Horn and E. J. Weldon, Jr., “ Filtering closed curves, ” IEEE Trans. Pattern Anal Machine Intell 8, pp. 665–668, 1986.CrossRefGoogle Scholar
  17. [17]
    B. B. Kimia, A. Tannenbaum, and S. W. Zucker, “Shapes, shocks, and deformations, I” to appear in International Journal of Computer Vision.Google Scholar
  18. [18]
    D. G. Lowe, “Organization of smooth image curves at multiple scales, ” International Journal of Computer Vision 3, pp. 119–130, 1989.CrossRefGoogle Scholar
  19. [19]
    J. L. Mundy and A. Zisserman (Eds.), Geometric Invariance in Computer Vision, MIT Press, 1992.Google Scholar
  20. [20]
    J. Oliensis, “Local reproducible smoothing without shrinkage, ” IEEE Trans. Pattern Anal. Machine Intell. 15, pp. 307–312, 1993.CrossRefGoogle Scholar
  21. [21]
    P. J. Olver, Equivalence, Invariants, and Symmetry, preliminary version of book, 1994.Google Scholar
  22. [22]
    P. J. Olver, Applications of Lie Groups to Differential Equations, Second Edition, Springer-Verlag, New York, 1993.MATHGoogle Scholar
  23. [23]
    P. J. Olver, “ Differential invariants, ” to appear in Acta Appl. Math. Google Scholar
  24. [24]
    P. J. Olver, G. Sapiro, and A. Tannenbaum, “ Differential invariant signatures and flows in computer vision: A symmetry group approach, ” in [28].Google Scholar
  25. [25]
    P. J. Olver, G. Sapiro, and A. Tannenbaum, “Invariant geometric evolutions of surfaces and volumetric smoothing, ” MIT Technical Report — LIDS, April 1994. To appear in SIAM-JAM.Google Scholar
  26. [26]
    S. J. Osher and J. A. Sethian, “Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, ” Journal of Computational Physics 79, pp. 12–49, 1988.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion, ” IEEE Trans. Pattern Anal Machine Intell 12, pp. 629–639, 1990.CrossRefGoogle Scholar
  28. [28]
    B. Romeny, Editor, Geometry Driven Diffusion in Computer Vision, Kluwer, 1994.MATHGoogle Scholar
  29. [29]
    L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms, ” Physica D 60, pp. 259–268, 1992.MATHCrossRefGoogle Scholar
  30. [30]
    G. Sapiro, R. Kimmel, D. Shaked, B. B. Kimia, and A. M. Bruckstein, “Implementing continuous-scale morphology via curve evolution, ” Pattern Recognition 26:9, 1993.CrossRefGoogle Scholar
  31. [31]
    G. Sapiro and A. Tannenbaum, “On affine plane curve evolution, ” Journal of Functional Analysis 119:1, pp. 79–120, January 1994.MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    G. Sapiro and A. Tannenbaum, “AfSne invariant scale-space, ” International Journal of Computer Vision 11, pp. 25–44, 1993.CrossRefGoogle Scholar
  33. [33]
    G. Sapiro and A. Tannenbaum, “Image smoothing based on an affine invariant flow, ” Proceedings of the Conference on Information Sciences arid Systems, Johns Hopkins University, pp. 196–201, March 1993.Google Scholar
  34. [34]
    G. Sapiro and A. Tannenbaum, “Formulating invariant heat-type curve flows, ” Proceedings of the SPIE Conference on Geometric Methods in Computer Vision II, San Diego, July 1993.Google Scholar
  35. [35]
    G. Sapiro and A. Tannenbaum, “On invariant curve evolution and image analysis, ” Indiana Journal of Mathematics 42:3, pp. 985–1009, 1993.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    G. Sapiro and A. Tannenbaum, “ Area and length preserving geometric invariant scale-spaces, ” MIT Technical Report - LIDS-2200 (accepted for publication in IEEE-PAMI). Also in Proc. ECCV ’; 94, Stockholm, May 1994.Google Scholar
  37. [37]
    G. Sapiro, and A. Tannenbaum, “Edge preserving geometric enhance¬ment of MRI data, ” TR, University of Minnesota, EE Dept., April 1994.Google Scholar
  38. [38]
    G. Sapiro and V. Caselles, “Histogram modification via partial differential equations, ” HP Labs TR, October 1994.Google Scholar
  39. [39]
    G. Sapiro and D. Ringach, “ Anisotropic diffusion in color space, ” HP Labs TR, November 1994.Google Scholar
  40. [40]
    R. Schwartz, “The pentagram map, ” Exp. Math 11, pp. 71–81, 1992.Google Scholar
  41. [41]
    A. P. Witkin, “ Scale-space filtering, ” Int. Joint Conf. AI, pp. 1019–1021, 1983.Google Scholar
  42. [42]
    S. Kichenassamy, A. Kumar, R Olver, A. Tannenbaum, and A. Yezzi, “Grandient flows and geometric active contours, ” 1994.Google Scholar
  43. [43]
    R. Malladi, J.A. Sethian, and B.C. Vemuri, “Shape modeling with front propagation: A level set approach, ” IEEE-PAMI, to appear.Google Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • Guillermo Sapiro
    • 1
  1. 1.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations