Applications of Singularity Theory to the Solutions of Nonlinear Equations

  • James Damon
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 15)


The past twenty-five years has seen major strides in our understanding of the solutions to nonlinear ordinary and partial differential equations. This progress has built on earlier foundational work which was often concerned with, for example, establishing the existence of at least one solution for a nonlinear equation or determining the parameter values at which a solution bifurcates. These questions have been refined to ones involving more precise information about the solutions. This includes the precise properties of the set of solutions such as: the exact description of the bifurcation of equilibrium points and limit cycles for ordinary differential equations, the multiplicity of solutions to nonlinear elliptic equations, the number of periodic solutions appearing from perturbations of Hamiltonian systems, and the nature of the branching of such solutions. At the same time, the methods lead to increased knowledge about the nature of the solutions to nonlinear equations, including symmetry properties of solutions to nonlinear PDE’s as well as properties of steady state solutions to evolution equations such as reaction-diffusion equations.


Periodic Solution Singularity Theory Morse Function Local Algebra Newton Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. AGV.
    Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.G. Singularities of Differentiable Maps, Birkhauser, Boston-Basel-Berlin (1988)zbMATHGoogle Scholar
  2. BG1.
    Bruce, J. W. and Giblin, P. J. Curves and Singularities, Cambridge Univ. Press, Cambridge-NewYork (1984)zbMATHGoogle Scholar
  3. CH.
    Chow, S.N. and Hale, J.K. Methods of Bifurcation Theory, Grundlehren Math. Wissenschaften 251, Springer-Verlag, Heidelberg-New York (1982)zbMATHGoogle Scholar
  4. GG.
    Golubitsky, M. and Guillemin, V. Stable Mappings and their Singularities, Springer-Verlag, New York (1973).zbMATHGoogle Scholar
  5. GS1.
    Golubitsky, M. and Schaeffer, D. Singularities and Groups in Bifurcation Theory, Springer-Verlag, New York (1985).zbMATHGoogle Scholar
  6. GSS.
    Golubitsky, M., Stewart, I., and Schaeffer, D. Singularities and Groups in Bifurcation Theory Vol. II, Springer-Verlag, New York (1988).zbMATHGoogle Scholar
  7. Marl.
    Martinet, J. Singularities of Smooth Functions and Maps. London Math. Soc. Lect. Notes 58, Cambridge Univ. Press (1982)zbMATHGoogle Scholar
  8. PS.
    Poston, T. and Stewart, I. Catastrophe Theory and its Applications, Putnam, London-New York (1978)zbMATHGoogle Scholar
  9. Sal.
    Sattinger, D. Group Theoretic Methods in Bifurcation Theory, Springer Lect. Notes in Math. 762 (1979)zbMATHGoogle Scholar
  10. Th1.
    Thom, R. Structural Stability and Morphogenesis, (1972) W.A. Benjamin - Addison-WeseleyGoogle Scholar

§1 Lyapunov-Schmidt Reduction

  1. Fr.
    Fraenkel, L. Formulae for Higher Derivatives of Composite Functions, Proc. Camb. Phil. Soc. 83 (1978), 159–165MathSciNetzbMATHCrossRefGoogle Scholar
  2. N.
    Nirenberg, L. Topics in Nonlinear Functional Analysis, Courant Lecture Notes, New York (1974)zbMATHGoogle Scholar
  3. Rg.
    Ronga, F. A new look at Faá de Bruno’s Formula for Higher Derivatives of Composite Functions and the Expression of some Intrinsic Derivatives, Proc. Sym. Pure Math. 40 Pt 2 (1983) 423–432MathSciNetGoogle Scholar

§2 Stability of Mappings

  1. Ha.
    Hamilton, R. S. The Inverse Function Theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982) 65–222MathSciNetzbMATHCrossRefGoogle Scholar
  2. Mg.
    Malgrange, B. Ideals of differentiable functions, Oxford Univ.Press (1966).zbMATHGoogle Scholar
  3. Ma1.
    Mather, J. Stability of C -mappings: I. The Division Theorem, Ann. of Math. 89 (1969), 89–104.MathSciNetCrossRefGoogle Scholar
  4. Ma1.
    Mather, J. Stability of C -mappings: II. In finitesimal stability implies stability, Ann. of Math. (2) 89(1969), 254–291;MathSciNetzbMATHCrossRefGoogle Scholar
  5. Ma1.
    Mather, J. Stability of C -mappings: III. Finitely determined map germs, Inst. Hautes Etudes Sci. Publ. Math. 36 (1968), 127–156;MathSciNetCrossRefGoogle Scholar
  6. Ma1.
    Mather, J. Stability of C -mappings: IV. Classification of stable germs by R-algebras, Inst. Hautes Etudes Sci. Publ. Math. 37 (1969), 223–248.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Ma1.
    Mather, J. Stability of C -mappings: V. Transversality, Advances in Math. 4 (1970), 301–336.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Ma1.
    Mather, J. Stability of C -mappings: VI. The nice dimensions, Liverpool Singularities Symposium I, Springer Lecture Notes in Math. 192 (1970), 207–253.Google Scholar
  9. Mi.
    Milnor, J. Morse Theory, Annals Math. Studies 51 (1963) Princeton Univ. PresszbMATHGoogle Scholar
  10. Th2.
    Thom, R. Les Singularités des applications differentiables, I; Annales Inst. Fourier (Grenoble) 6 (1955), 43–87.MathSciNetGoogle Scholar
  11. Th3.
    – – – – – Local Topological Properties of Differentiable Mappings, Colloquium on Differential Analysis, Tata Institute Bombay, Oxford Univ. Press (1964), 191–202Google Scholar
  12. ThL.
    Thom, R. and Levine, H. Singularities of Differentiable Mappings, Proceedings Liverpool Singularities Symposium, Springer Lecture Notes 192 (1971) 1–89Google Scholar
  13. Wa1.
    Wall, C.T.C. Lectures on C -Stability and Classification, Proceedings of Liverpool Singuarities Symposium, Springer Lecture Notes 192 (1971), 178–206.Google Scholar
  14. Wh1.
    Whitney, H. Analytic Extensions of Differentiable Functions defined in Closed Sets, Trans. Amer. Math. Soc. 36 (1934) 63–89MathSciNetCrossRefGoogle Scholar
  15. Wh2.
    – – – – – – – On the Singularities of Mappings of Euclidean Spaces I, Mappings of the plane to the Plane, Ann. Math. 62 (1955) 374–410.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Wh3.
    – – – – – – On the Singularities of Smooth n-Manifolds into (2n-1)- space, Ann. Math. 45 (1944) 247–293MathSciNetzbMATHCrossRefGoogle Scholar

§3 Local Theory as Paradigm

  1. BDW.
    Bruce, J. W., DuPlessis, A., and Wall, C.T.C. Unipotency and Determinacy, Invent. Math. 88 (1987) 521–554MathSciNetzbMATHCrossRefGoogle Scholar
  2. DuG.
    DuPlessis, A. and Gaffney, T. More on the determinacy of smooth map germs, Invent. Math. 66 (1982), 137–163.MathSciNetCrossRefGoogle Scholar
  3. Gaf1.
    Gaffney, T. A Note on the Order of Determination of a Finitely Determined Germ, Invent. Math. 52 (1979), 127–135.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Ma2.
    Mather, J. Notes on right equivalence, 1970, unpublished notesGoogle Scholar
  5. Mar2.
    Martinet, J. Deploiements versels des applications differentiables et classification des applications stables, Singularites d’Applications Differentiables, Plans-Sur- Bex, Springer Lecture Notes 535 (1975) 1–44.Google Scholar
  6. Si.
    Siersma, D. Classification and Deformation of Singularities, Thesis, University of Amsterdam, 1974.zbMATHGoogle Scholar
  7. Tg.
    Tougeron, J.-Cl. Ideaux de fonctions differentiables, I; Annales Inst. Fourier (Grenoble) 18 (1968), 177–240.MathSciNetzbMATHGoogle Scholar
  8. Ws1.
    Wasserman, G. Stability of Unfoldings, Springer Lecture Notes 393 (1974)CrossRefGoogle Scholar
  9. Wa2.
    Wall, C.T.C. Finite Determinacy of Smooth Map Germs, Bull. London Math. Soc. 13 (1981) 481–539MathSciNetzbMATHCrossRefGoogle Scholar

§4 Singularity Theory with Special Conditions

  1. A1.
    Arnold, V. I. Wave front evolution and equivariant Morse lemma, Comm. Pure App. Math. 29 (1976), 557–582.CrossRefGoogle Scholar
  2. A2.
    – – – – – – –Normal forms for functions, nondegenerate critical points, the Weyl Groups A n, D n, E n and Lagrangian singularities, Funct. Anal, and Appl.6 (1972), 254–272.CrossRefGoogle Scholar
  3. A3.
    – – – – – – – On Matrices Depending on Parameters, Russian Math. Surveys 26 (1971) 29–43CrossRefGoogle Scholar
  4. A4.
    – – – – – – – Singularities of Systems of Rays, Russian Math. Surveys 38, (1983) 77–147CrossRefGoogle Scholar
  5. Ba.
    Baas, N. Structural stability of composed mappings, preprint, 1974Google Scholar
  6. Bi.
    Bierstone, E. The structure of orbit spaces and the singularities of equivariant mappings, I.M.P.A. Monograph 35 (1980).zbMATHGoogle Scholar
  7. BG2.
    Bruce, J. W. and Giblin, P. J. Smooth maps of discriminant varieties, Proc. London Math. Soc. (3), 50 (1985), 535–551.MathSciNetzbMATHCrossRefGoogle Scholar
  8. BG3.
    – – – – – – and Giblin, P. J. Projections of Surfaces with Boundaries, Proc. London Math. Soc. 60 (1990) 392–416MathSciNetzbMATHCrossRefGoogle Scholar
  9. BR.
    Bruce, J. W. and Roberts, M. Critical points of functions on analytic varieties, Topology 27 (1988) 57–90.MathSciNetzbMATHCrossRefGoogle Scholar
  10. D1.
    Damon, J. The unfolding and determinacy theorems for subgroups of A and K Proc. Sym. Pure Math. 40 (1983) 233–254.MathSciNetGoogle Scholar
  11. D1.
    Damon, J. The unfolding and d eterminacy theorems for subgroups of A and B Memoirs A.M.S. 50, no. 306 (1984).Google Scholar
  12. D2.
    – – – – – – Deformations of sections of singularities and Gorenstein surface singularities, Amer. J. Math. 109 (1987) 695–722.MathSciNetzbMATHCrossRefGoogle Scholar
  13. D3.
    – – – – – – Topological equivalence of bifurcation problems, Nonlinearity 1 (1988), 311–331MathSciNetzbMATHCrossRefGoogle Scholar
  14. D4.
    – – – – – – Topological invariants of μ-constant deformations of complete intersection singularities, Quart. J. Math. 40 (1989), 139–160MathSciNetzbMATHCrossRefGoogle Scholar
  15. D5.
    – – – – – – Generic Properties of Solutions to Partial Differential Equations, preprintGoogle Scholar
  16. DS.
    Dangelmayr, G. and Stewart, I. Classification and unfolding sequential bifurcations, SIAM J. Math. Anal. 15 (1984), 423–445.MathSciNetzbMATHCrossRefGoogle Scholar
  17. DD.
    Dubois, J. and Dufour, J. P. Singularités de Solutions d’equations aux Derivées Partielles, Jour. Diff. Eqtns 60, (1985) 174–200MathSciNetzbMATHCrossRefGoogle Scholar
  18. Du1.
    Dufour, J. P. Deploiements de cascades d’applications differentiables, C. R. Acad. Sci. Paris Ser. A281 (1975), 31–34.MathSciNetGoogle Scholar
  19. Du2.
    – – – – – – Sur la stabilité des diagrammes d’applications différentiables, Ann. Sci. Ecole Norm. Sup. (4) 10 (1977), 153–174.MathSciNetzbMATHGoogle Scholar
  20. Du3.
    – – – – – – Famille de courbes planes différentiables, Topology 22 (1983), 449–474MathSciNetzbMATHCrossRefGoogle Scholar
  21. Du4.
    – – – – – – Stabilité simultanée de deux fonctions, Ann. Inst. Fourier 29 (1979), 263–282.MathSciNetzbMATHGoogle Scholar
  22. Dm.
    Duistermaat, J J. Bifurcations of Periodic Solutions near Equilibrium Points of Hamiltonian Systems, Bifurcation Theory and Applications, Springer Lecture Notes 1057 (1984) 57–105MathSciNetCrossRefGoogle Scholar
  23. FR.
    Fadell, E. and Rabinowitz, P. Generalized Cohomological Index Theories and Lie Group Actions with an Application to Bifurcation Questions for Hamiltonian Systems, Invent. Math. 45 (1978) 139–174MathSciNetzbMATHCrossRefGoogle Scholar
  24. FM.
    Favaro, L. and Mendes, C. M. Global stability of diagrams of differentiable applications, Annales Inst. Fourier 36 (1986) 133–154MathSciNetzbMATHGoogle Scholar
  25. Gaf2.
    Gaffney, T. New Methods in the Classification Theory of Bifurcation Problems, Contemp. Math. 56, Amer. Math. Soc. (1986) 97–116MathSciNetGoogle Scholar
  26. Gal2.
    Galligo, A. Théorème de division et stabilité en géometrie analytique locale, Annales Inst. Fourier 29 (1979), 107–184.MathSciNetzbMATHGoogle Scholar
  27. Ge1.
    Gervais, J. J. Germes de G-determination finie, C. R. Acad. Sci. Paris Ser. A-B 284A (1977), 291–293.MathSciNetGoogle Scholar
  28. Ge2.
    Gervais, J. J. Criteres de G-stabilité en terms de transversalité, Canad. J. Math. 31 (1979), 264–273.MathSciNetzbMATHCrossRefGoogle Scholar
  29. GR.
    Golubitsky, M. and Roberts, M. A Classification of Degenerate Hopf Bifurcations with O(2) Symmetry, Jour. Diff. Eqtns. 69 (1987) 216–264.MathSciNetzbMATHCrossRefGoogle Scholar
  30. GS2.
    Golubitsky, M. and Schaeffer, D. A theory for imperfect bifurcation via singularity theory, Comm. Pure. Appl. Math. 32 (1979), 21–98.MathSciNetzbMATHCrossRefGoogle Scholar
  31. GS3.
    Golubitsky, M. and Schaeffer, D. Imperfect bifurcation in the presence of symmetry, Comm. Math. Phys 67 (1979), 203–223.MathSciNetCrossRefGoogle Scholar
  32. GS4.
    Golubitsky, M. and Schaeffer, D. A discussion of symmetry and symmetry breaking, Proc. Sym. Pure Math. 40 (1983), 499–516.MathSciNetGoogle Scholar
  33. GSt.
    Golubitsky, M. and Stewart, I.N. Symmetry and Stability in Taylor-Couette flow, SIAM J. Math. Anal. 17 (1986) 249–288MathSciNetzbMATHCrossRefGoogle Scholar
  34. G.
    Goryunov, V. V. Projections of generic surfaces with boundaries, Adv. Soviet Math. 1 (1990), 157–200MathSciNetGoogle Scholar
  35. Iz1.
    Izumiya, S. Generic bifurcations of varieties, Manuscripta Math. 46 (1984) 137–164.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Iz2.
    – – – – – – Stability of G-unfoldings, Hokkaido Math. J. IX 1 (1980) 31–45.Google Scholar
  37. Iz2.
    – – – – – – First Order Partial Differential Equations and Singularities, preprintGoogle Scholar
  38. LL.
    Lari-Lavasani, A. Multiparameter Bifurcation with Symmetry via Singularity Theory, Thesis Ohio State Univ. 1990Google Scholar
  39. La.
    Latour, F. Stabilité des Champs d’applications Différentiables: Generalization d’un Théorème de J. Mather, C.R. Acad. Sci. Paris Sér. A-B 268A (1969), 1331–1334.MathSciNetGoogle Scholar
  40. Lê.
    Lê, D.T. Calcul du nombre de cycles evanouissants d’une hypersurface complex, Annales Inst. Fourier 23 (1973), 261–270.zbMATHGoogle Scholar
  41. Ly.
    Lyashko, O. Classification of critical points of functions on a manifold with singular boundary, Funct. Anal. and Appl.(1984), 187–193.Google Scholar
  42. MRS1.
    Montaldi, J., Roberts, M., and Stewart, I. Periodic Solutions near Equilibria of symmetric Hamiltonian systems, Phil. Trans. Roy. Soc. London A 325 (1988) 237–293.MathSciNetzbMATHCrossRefGoogle Scholar
  43. MRS2.
    – – – – – – – Existence of nonlinear normal modes of symmetric Hamiltonian systems, Nonlinearity 3 (1990) 695–730MathSciNetzbMATHCrossRefGoogle Scholar
  44. Mo.
    Moser, J. Periodic Solutions near an Equilibrium and a Theorem of Alan Weinstein, Comm. Pure Appl. Math. 29 (1976) 727–747.zbMATHCrossRefGoogle Scholar
  45. Pk.
    Pellikan, R. Finite Determinacy of Functions with Nonisolated Singularities, Proc. London Math. Soc. 57, (1988), 357–382.MathSciNetCrossRefGoogle Scholar
  46. Pr.
    Peters, M. Classification of Two Parameter Bifurcations, Singularity Theory and its Applications: Warwick 1989 Pt. 2, Springer Lecture Notes 1463 (1991) 294–300.CrossRefGoogle Scholar
  47. P.
    Poenaru, V. Singularités C en présence de symétrie, Lecture Notes in Math., vol. 510, Springer-Verlag, Berlin and New York, 1976.zbMATHGoogle Scholar
  48. Ra.
    Rabinowitz, P. Periodic Solutions of Hamiltonian Systems: a Survey, SIAM J. Math. Anal. 13 (1982) 343–352MathSciNetzbMATHCrossRefGoogle Scholar
  49. Rb.
    Roberts, M. Characterizations of finitely determined equivariant map germs, Math. Annalen 275 (1986) 583–597zbMATHCrossRefGoogle Scholar
  50. Sa2.
    Sattinger, D. Bifurcation and Symmetry Breaking in Applied Mathematics, Bull. Amer. Math. Soc. 3 (new series) (1980) 779–819MathSciNetzbMATHCrossRefGoogle Scholar
  51. Si2.
    Siersma, D. Singularities of functions on boundaries, corners, etc., Quart. J. Math. 32 (1981), 119–127.MathSciNetzbMATHCrossRefGoogle Scholar
  52. Sz.
    Schwarz, G. Smooth functions in variant under the action of a compact Lie group, Topology 14 (1975), 63–68.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Sw.
    Swift, J.W. Bifurcation and Symmetry in Convection, Thesis Univ. of California, Berkeley 1984Google Scholar
  54. Ta.
    Tari, F. Projections of Piecewise Smooth Surfaces, J. London Math. Soc. 44 (1991), 155–172MathSciNetzbMATHCrossRefGoogle Scholar
  55. VM.
    Van der Meer, J.C. The Hamiltonian-Hopf Bifurcation, Springer Lecture Notes 1160 (1985)zbMATHGoogle Scholar
  56. Ws2.
    Wasserman, G. Stability of unfoldings in space and time, Acta. Math. 135 (1975), 57–128.MathSciNetCrossRefGoogle Scholar
  57. We.
    Weinstein, A. Normal Modes for Nonlinear Hamiltonian Systems, Invent. Math. 20 (1973) 47–57MathSciNetzbMATHCrossRefGoogle Scholar
  58. Za.
    Zakalyukin, V. Lagrangian and Legendrian Singularities, Funct. Anal. Appl. 10, (1976) 23–31zbMATHCrossRefGoogle Scholar
  59. Ze.
    Zeeman, E.C. Differential Equations for the Heartbeat and Nerve Impulse, in Dynamical Systems, M. Peixoto, Editor, Academic Press, New York, 1973, 683–741.Google Scholar

§5 Structure of Nonlinear Operators

  1. AP.
    Ambrosetti, A. and Prodi, G. On the inversion of some differentiable maps with singularities, Annali. di Math. 93 (1972), 231–246.MathSciNetzbMATHCrossRefGoogle Scholar
  2. BC.
    Berger, M. and Church, P. Complete integrability and perturbation of a nonlinear Dirichlet problem I., Indiana Univ. Math. J. 28 (1979), 935–952.MathSciNetzbMATHCrossRefGoogle Scholar
  3. BCT.
    Berger, M., Church, P., and Timourian, J. An application of singularity theory to nonlinear elliptic partial differential equations, Proc. Sym. Pure Math. 40 (1983), 119–126.MathSciNetGoogle Scholar
  4. BCT2.
    Berger, M., Church, P., and Timourian, J. Folds and Cusps in Banach Spaces: With applications to partial differential equations I, Indiana Univ. Math. J. 34 (1985), 1–19.MathSciNetzbMATHCrossRefGoogle Scholar
  5. CT.
    Church, P., and Timourian, J. Global Fold Maps in Differential and Integral Equations, Nonlinear Anal. 18, (1992) 743–758MathSciNetzbMATHCrossRefGoogle Scholar
  6. C.
    Cafagna, V. Global In vertibility and Finite Solvability, Nonlinear Functional Analysis, Ed. P.S. Milojević, Lect. Notes Pure and Appl. Math. 121 (1990), Dekker, New York, 1–30Google Scholar
  7. D6.
    – – – – – A theorem of Mather and the Local Structure of Nonlinear Fredholm Maps, Proc. Sym. Pure Math. vol. 45 pt. 1 (1985) 339–352MathSciNetGoogle Scholar
  8. D7.
    Damon, J. Time Dependent Nonlinear Oscillations with many Periodic Solutions, SIAM Jour. Math. Anal. 18 (1987) 1294–1316MathSciNetzbMATHCrossRefGoogle Scholar
  9. HR.
    Hale, J.K. and Rodriguez, H.M. Bifurcation in the Duffing Equation with Independent Parameters I, Proc. Roy. Soc. Edinburgh 77A, (1977) 57–65; II, 79A (1978) 317–326Google Scholar
  10. MD.
    Mather, J. and Damon, J. Preliminary Notes on C-Stability of Mappings, unpublishedGoogle Scholar
  11. Mc.
    McKean, H.P. Singularities of a Simple Elliptic Operator, Jour. Diff. Geom. 25 (1987) 157–165MathSciNetzbMATHGoogle Scholar
  12. MSc.
    McKean, H.P. and Scovel, J.C. Geometry of Some Nonlinear Differential Operators, Annali Scu. Norm. Sup. Pisa 13 (1986) 299–346MathSciNetzbMATHGoogle Scholar
  13. Te.
    Teissier, B. Cycles évanescents, sections planes, et conditions de Whitney, Singularités à Cargèse, Astérisque 7, 8 (1973), 285–362.MathSciNetGoogle Scholar

§6 Multiplicities of Solutions

  1. AFN.
    Aoki, K., Fukuda, T. and Nishimura T. On the number of branches of the zero 1 ocus of a map germ (Rn,0) → (Rn-1,0), Topology and Computer Sciences, S. Suzuki ed. Kinokuniya Co. Ltd. Tokyo (1987) 347–367.Google Scholar
  2. AFN2.
    – – – – – An algebraic formula for the topological types of one parameter bifurcation diagrams, Arch. Rati Mech. and Anal. 108 (1989) 247–266.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Brc.
    Briancon, J. Description de Hilb n x, y, Invent. Math. 41 (1977) 45–89MathSciNetzbMATHCrossRefGoogle Scholar
  4. BGal.
    Briancon, J. and Galligo, A. Déformations de points de R 2 ou C 2 Astérisque 7 & 8 (1973) 129–138MathSciNetGoogle Scholar
  5. Bu.
    Buchberger, B. An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, N. K. Bose Ed., D. Reidel Publ., Dordrecht (1985), 184–232Google Scholar
  6. D8.
    Damon, J. G-signature, G-degree, and the symmetries of branches of curve singularities, Topology 30 (1991) 565–590MathSciNetzbMATHCrossRefGoogle Scholar
  7. D9.
    – – – – – Equivariant bifurcations and Morsifications for finite groups, Singularity Theory and its Applications: Warwick 1989 Pt. 2, Springer Lecture Notes 1463 (1991) 80–106MathSciNetGoogle Scholar
  8. DGal.
    Damon, J. and Galligo, A. A Topological Invariant for Stable Map Germs, Invent. Math. 32 (1976) 103–132MathSciNetzbMATHCrossRefGoogle Scholar
  9. DGal2.
    – – – – – – On the Hilbert-Samuel Partition of Stable Map Germs, Bull. Soc. Math. France 111, (1983) 327–358MathSciNetzbMATHGoogle Scholar
  10. EL.
    Eisenbud, D. and Levine, H. An algebraic formula for the degree of a C -map germ, Annals of Math. 106 (1977) 19–44MathSciNetzbMATHCrossRefGoogle Scholar
  11. FRc1.
    Field, M. and Richardson, R. W. Symmetry Breaking and the maximal isotropy subgroup conjecture for reflection groups, Arch. Rat’l. Mech. and Anal. 105 (1989) 61–94MathSciNetzbMATHGoogle Scholar
  12. FRc2.
    – – – – – Symmetry breaking and Branching Patterns in Equivariant Bfurcation Theory, I and II, Arch. Rat. Mech. Anal. 118 (1992) 297–348 and 120 (1992) 147–190MathSciNetzbMATHCrossRefGoogle Scholar
  13. Gal2.
    Galligo, A. A propos du Théorèm de préparation de Weierstrass, Springer Lecture Notes in Math. 409 (1974), 543–579.MathSciNetCrossRefGoogle Scholar
  14. GH.
    Griffiths, P. and Harris, J. Principles of Algebraic Geometry, John Wiley, New York (1978)zbMATHGoogle Scholar
  15. GZ.
    Gusein-Zade, S. M. On the Degree of an Equivariant Map, Singularity Theory and its Applications: Warwick 1989 Pt. 2, Springer Lecture Notes 1463 (1991) 185–193.CrossRefGoogle Scholar
  16. Hr.
    Hartshorne, R. Residues and Duality, Springer Lecture Notes 20 (1966).zbMATHGoogle Scholar
  17. Hi.
    Himshiashvili, G. The Local Degree of a Smooth Mapping, Comm. Acad. Sci. Georgian SSR 85 (1977) 309–311Google Scholar
  18. Ia1.
    Iarrobino, A. Reducibility of the Families of 0-Dimensional Schemes on a Variety, Invent. Math. 15 (1972) 72–77MathSciNetzbMATHCrossRefGoogle Scholar
  19. Ia2.
    – – – – – – Punctual Hilbert Schemes, Memoirs Amer. Math. Soc. 10 (1977)Google Scholar
  20. IMV.
    IzeJ., Massabo, I., and Vignoli, A. Degree Theory for Equivariant Maps I, Trans. Amer. Math. Soc. 315, (1989) 433–510MathSciNetzbMATHCrossRefGoogle Scholar
  21. IMV2.
    – – – – – – Degree Theory for Equivariant Maps, the General S 1 -action, Memoirs Amer. Math.Soc. to appearGoogle Scholar
  22. Kh.
    Khovanski, A.G. Fewnomials and Pfaff Manifolds, Proc. Int. Cong. Math. (1983) 549–564Google Scholar
  23. MvS.
    Montaldi, J. and van Straten, D. One-forms on singular curves and the topology of real curves singularities, Topology 29, (1990) 501–510MathSciNetzbMATHCrossRefGoogle Scholar
  24. Pa.
    Palamodov, V.P. Multiplicity of Holomorphic Mappings, Funct. Anal. Appl. 1 (1967) 218–226MathSciNetzbMATHCrossRefGoogle Scholar

§7 Topological Equivalence

  1. A5.
    Arnold, V. I. Normal Forms of Functons in Neighborhoods of Degenerate Critical Points, Russian Math. Surveys 29, (1974) 10–50CrossRefGoogle Scholar
  2. BMS.
    Buchner, M., Marsden, J., and Schecter, S. Applications of the blowing-up construction and algebraic geometry to bifurcation problems. Jour. Diff. Eqtns. 48 (1983) 404–433.MathSciNetzbMATHCrossRefGoogle Scholar
  3. D10.
    Damon, J. Topological Stability in the Nice Dimensions, Topology 18 (1979) 129–142MathSciNetzbMATHCrossRefGoogle Scholar
  4. D11.
    – – – – – – The Relation between C and Topological Stability, Bol. Soc. Bras. Mat. 8, (1977) 1–38MathSciNetzbMATHCrossRefGoogle Scholar
  5. D12.
    – – – – – – Topological Triviality of Versai Unfoldings, Proc. Sym. Pure Math. 40 (1983) 255–266.MathSciNetGoogle Scholar
  6. D13.
    – – – – – – Finite determinacy and topological triviality I., Invent. Math. 62 (1980), 299–324.MathSciNetzbMATHCrossRefGoogle Scholar
  7. D13.
    – – – – – – Sufficient conditions and topological stability, Compositio Math. 47 (1982) 101–132.MathSciNetzbMATHGoogle Scholar
  8. D14.
    – – – – – – – – Topological triviality and versality for subgroups of A and K Memoirs Amer. Math. Soc. 389 (1988)Google Scholar
  9. D14.
    – – – – – – – – Sufficient Conditions and Applications, Nonlinearity 5 (1992), 373–412MathSciNetzbMATHCrossRefGoogle Scholar
  10. DGaf.
    Damon, J. and Gaffney, T. Topological triviality of deformations of functions and Newton filtrations, Invent. Math. 72 (1983) 335–358.MathSciNetzbMATHCrossRefGoogle Scholar
  11. DP.
    DuPlessis, A. On the genericity of topologically finitely determined map germs, Topology 21 (1982), 131–156MathSciNetCrossRefGoogle Scholar
  12. Gi.
    Gibson, C. G. et al Topological Stability of Smooth Mappings, Springer Lect. Notes 552, (1976)zbMATHCrossRefGoogle Scholar
  13. K.
    Kouchnirenko, A. G. Polyedres de Newton et nombres de Milnor, Invent. Math. 32 (1976) 1–31.MathSciNetCrossRefGoogle Scholar
  14. Ku1.
    Kuo, T. C. On C 0 -sufficiency of jets of potential functions, Topology 8 (1969), 167–171.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Ku2.
    Kuo, T. C. Characterization of v-sufficiency of jets, Topology 11 (1972), 115–131.MathSciNetzbMATHCrossRefGoogle Scholar
  16. LR.
    Lê, D. T. and Ramanujam, C. P. Invariance of Milnor’s number implies the invariance of topological type, Amer. J. Math. 98 (1976), 67–78.MathSciNetzbMATHCrossRefGoogle Scholar
  17. LT.
    Lê, D. T. and Teissier, B. Cycles évanescents, sections planes, et conditions de Whitney II Proc. Sym. Pure Math. 44 Part II (1983) 65–103Google Scholar
  18. Lo.
    Looijenga, E. Semi-universal deformation of a simple elliptic hypersurface singularity: I. Unimodularity, Topology 16 (1977) 257–262.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Lo2.
    – – – – – – Isolated Singular Points on Complete Intersections, London Math. Soc. Lect. Notes 77, Camb. Univ. Press (1984)zbMATHCrossRefGoogle Scholar
  20. Ma3.
    Mather, J. Stratifications and mappings, in Dynamical Systems, M. Peixoto, Editor, Academic Press, New York, 1973, 195–232.Google Scholar
  21. Ma4.
    – – – – – – How to stratify mappings and jet spaces, in Singularites d’rsApplications Differentiates, Plans-sur-Bex, Springer Lectures Notes in Math., vol. 535, (1975), 128–176Google Scholar
  22. Ma5.
    – – – – – – Generic Projections, Ann. Math. 98, (1973) 226–245MathSciNetzbMATHCrossRefGoogle Scholar
  23. My.
    May, R. Stability and Transversality, Bull. Amer. Math. Soc. 80, (1974) 85–89MathSciNetzbMATHCrossRefGoogle Scholar
  24. Mi2.
    Milnor, J. Singular Points of Complex Hypersurfaces, Annals Math. Studies 61 (1968) Princeton Univ. PresszbMATHGoogle Scholar
  25. MOr.
    Milnor, J. and Orlik, P. Isolated Singularities defined by Weighted Homogeneous Polynomials, Topology 9 (1970), 385–393MathSciNetzbMATHCrossRefGoogle Scholar
  26. O.
    Oka, M. On the Bifurcation of the Multiplicity and Topology of the Newton Boundary, Jour. Math. Soc. Japan 31 (1979), 435–450MathSciNetzbMATHCrossRefGoogle Scholar
  27. PB.
    Percell, P. B. and Brown, P. N. Finite Determination of Bifurcation Problems, SIAM J. Math. Anal. (1985), 28–46.Google Scholar
  28. Th4.
    Thom, R. Ensembles et Morphismes Stratifiés, Bull. Amer. Math. Soc. 75 (1969) 240–284MathSciNetzbMATHCrossRefGoogle Scholar
  29. Th5.
    – – – – – La Stabilité Topologique des applications Polynomials, Enseignment Math. 8 (1962) 24–33MathSciNetzbMATHGoogle Scholar
  30. Ti.
    Timourian, J. G. In variance of Milnor’s number implies topological triviality, Amer.J. Math. 99 (1979), 437–446.MathSciNetCrossRefGoogle Scholar
  31. Va.
    Varchenko, A. N. Local Topological Properties of Differentiable Mappings, USSR-Izv. 8 (1974), 1033–1082.CrossRefGoogle Scholar
  32. W.
    Wirthmuller, K. Universell Topologische Triviale Deformationen, Thesis, Univ. of Regensberg.Google Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • James Damon
    • 1
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations