Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences

  • Art B. Owen
Part of the Lecture Notes in Statistics book series (LNS, volume 106)


This article presents a hybrid of Monte Carlo and Quasi-Monte Carlo methods. In this hybrid, certain low discrepancy point sets and sequences due to Faure, Niederreiter and Sobol’ are obtained and their digits are randomly permuted. Since this randomization preserves the equidistribution properties of the points it also preserves the proven bounds on their quadrature errors. The accuracy of an estimated integrand can be assessed by replication, consisting of independent re-randomizations.


Orthogonal Array Latin Hypercube Sample Probability Zero Monte Carlo Variance Elementary Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braaten, E. & Weller, G. (1979). An Improved Low-Discrepancy Sequence for Multidimensional Quasi-Monte Carlo Integration. J. Comp. Physics 33, 249 – 258.MATHCrossRefGoogle Scholar
  2. Chung, K.L. (1974). A Course in Probability Theory. Academic Press, New York.MATHGoogle Scholar
  3. Cranley, R. CC Patterson, T.N.L. (1976). Randomization of Number Theoretic Methods for Multiple Integration. SIAM J. Numer. Anal 13, 904 – 914.MathSciNetMATHGoogle Scholar
  4. Davis, P.J. & Rabinowitz, P. (1984). Methods of Numerical Integration, 2nd Ed. Academic Press Inc, Orlando FL.MATHGoogle Scholar
  5. Efron, B. & Stein, C. (1981). The Jackknife Estimate of Variance. Ann. Stat. 9, pp 586 – 596.MathSciNetMATHCrossRefGoogle Scholar
  6. Efron, B. & Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall, London.MATHGoogle Scholar
  7. Faure, H. (1982). Discrépance de Suites Associées à un système de Numération (en Dimension s). Acta Arith. 41, 337 – 351.MathSciNetMATHGoogle Scholar
  8. Genz, A. (1984). Testing Multidimensional Integration Routines, in Tools, Methods and Languages for Scientific and Engineering Computation, B. Ford, J. C. Rault, & F. Thomasset, eds., 81 – 94 North-Holland, Amsterdam.Google Scholar
  9. Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.Google Scholar
  10. Joe, S. (1990). Randomization of Lattice Rules for Numerical Multiple Integration. J. Comp. Appl. Math. 31, 299 – 304.MathSciNetMATHCrossRefGoogle Scholar
  11. McKay, M.D., Conover, W.J. & Beckman, R.J. (1979). A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code. Technometrics 21, 239 – 245.MathSciNetMATHCrossRefGoogle Scholar
  12. Niederreiter, H. (1978). Quasi-Monte Carlo Methods and Pseudo-Random Numbers. Bull. Amer. Math. Soc. 84957 – 1041.MathSciNetMATHCrossRefGoogle Scholar
  13. Niederreiter, H. (1987). Point Sets and Sequences with Small Discrepancy. Monatsh. Math. 104, 273 – 337.MathSciNetMATHCrossRefGoogle Scholar
  14. Niederreiter, H. (1988). Low Discrepancy and Low-Dispersion Sequences. J. Number Theory 30, 51 – 70.MathSciNetMATHCrossRefGoogle Scholar
  15. Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF, SIAM, Philadelphia.MATHGoogle Scholar
  16. Owen, A. B. (1990). Empirical Likelihood and Small Samples. Computing Science and Statistics, Proceedings of the 22nd Symposium on the Interface A.S.A., Alexandria VA.Google Scholar
  17. Owen, A. B. (1992a). A Central Limit Theorem for Latin Hypercube Sampling. Journal of the Royal Statistical Society, Ser. B. Google Scholar
  18. Owen, A.B. (1992b). Orthogonal Arrays for Computer Experiments, Integration and Visualization. Stat. Sinica 2, 439 – 452.MathSciNetMATHGoogle Scholar
  19. Owen, A.B. (1994a). Lattice Sampling Revisited: Monte Carlo Variance of Means Over Randomized Orthogonal Arrays. Ann. Stat. 22pp. 930 – 945.MathSciNetMATHCrossRefGoogle Scholar
  20. Owen, A.B. (1994b). “Monte Carlo Variance of Scrambled Equidistribution Quadrature”. Dept. of Statistics Technical Report Number 466, Stanford University.Google Scholar
  21. Patterson, H.D. (1954). The Errors of Lattice Sampling. J.R.S.S. B 16, 140 – 149.MathSciNetMATHGoogle Scholar
  22. Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York.MATHGoogle Scholar
  23. Ripley, B.D (1987). Stochastic Simulation. J. Wiley, New York.MATHCrossRefGoogle Scholar
  24. Sacks, J., Welch, W.J., Mitchell, T.J. & Wynn, H.P. (1989). Design and Analysis of Computer Experiments. Statistical Science 4, 409 – 435.MathSciNetMATHCrossRefGoogle Scholar
  25. Roos, P. & Arnold, L. (1963). Numerische Experimente zur Mehrdimensionalen Quad- ratur. Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 172, 271 – 286.MathSciNetMATHGoogle Scholar
  26. Sobol’, I.M. (1967). The Distribution of Points in a Cube and the Accurate Evaluation of Integrals (in Russian). Zh. Vychisl. Mat. i Mat. Phys. 7, 784 – 802.MathSciNetGoogle Scholar
  27. Stein, M. (1987). Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics 29, 143 – 151.MathSciNetMATHCrossRefGoogle Scholar
  28. Tang, B. (1993). Orthogonal Array-Based Latin Hypercubes. J.A.S.A. 88, 1392 – 1397.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Art B. Owen
    • 1
  1. 1.Dept. of StatisticsSequoia Hall Stanford UniversityStanfordUSA

Personalised recommendations