Skip to main content

Wavelet Thresholding: Beyond the Gaussian I.I.D. Situation

  • Chapter
Wavelets and Statistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 103))

Abstract

With this article we first like to a give a brief review on wavelet thresholding methods in non-Gaussian and non-i.i.d. situations, respectively. Many of these applications are based onGaussian approximations of the empirical coefficients. For regression and density estimation with independent observations, we establish joint asymptotic normality of the empirical coefficients by means of strong approximations. Then we describe how one can prove asymptotic normality under mixing conditions on the observations by cumulant techniques.

In the second part, we apply these non-linear adaptive shrinking schemes to spectral estimation problems for both a stationary and a non-stationary time series setup. For the latter one, in a model of Dahlhaus ([Da93]) on theevolutionary spectrum of a locally stationary time series, we present two different approaches. Moreover, we show that in classes of anisotropic function spaces an appropriately chosen wavelet basis automatically adapts to possibly different degrees of regularity for the different directions. The resulting fully-adaptive spectral estimator attains the rate that is optimal in the idealized Gaussian white noise model up to a logarithmic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beylkin, G., Coifman, R. and Rokhlin, V. (1991). Fast Wavelet Transforms and Numerical Algorithms I.Comm. Pure Applied Math.44, 141–183.

    Article  MathSciNet  MATH  Google Scholar 

  2. Brillinger, D. R. (1994). Some asymptotics of wavelet fits in the stationary error case. Technical report 415, Dept. of Statist., U. C. Berkeley.

    Google Scholar 

  3. Brown, D. L. and Low, M. (1992). Asymptotic equivalence of nonparametric regression and white noise. Manuscript.

    Google Scholar 

  4. Cohen, A., Daubechies, I. and Vial, P. (1993). Wavelets on the Interval and Fast Wavelet ransform.Appl. Comp. Harmonic Anal. 1, 54–81.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dahlhaus, R. (1993). Fitting time series models to nonstationary processes. Preprint, University of Heidelberg.

    Google Scholar 

  6. Dahlhaus, R. (1994). On the Kullback-Leibler information divergence of locally stationary processes. Preprint, University of Heidelberg.

    Google Scholar 

  7. Dahlhaus, R., Neumann, M. H., and von Sachs, R. (1995). Nonlinear wavelet estimation of time-varying autoregressive processes. Manuscript in preparation.

    Google Scholar 

  8. Daubechies, I. (1992).Ten Lectures on Wavelets, SIAM, Philadelphia.

    MATH  Google Scholar 

  9. Delyon, B. and Juditsky, A. (1993). Wavelet estimators, global error measures: revisited. Technical Report No. 782, Irisa, France.

    Google Scholar 

  10. Donoho, D. L. and Johnstone, I. M. (1992). Minimax estimation via wavelet shrinkage. Technical Report No. 402, Department of Statistics, Stanford University.

    Google Scholar 

  11. Donoho, D. L. and Johnstone, I. M. (1993). Adapting to unknown smoothness via wavelet shrinkage. Technical Report, Department of Statistics, Stanford University.

    Google Scholar 

  12. Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.Biometrika 81, 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet shrinkage: asymptopia?J. R. Statist. Soc., Ser. B57, to appear.

    Google Scholar 

  14. Fan, J . (1994). Test of significance based on wavelet thresholding and Neyman’s truncation. Technical Report.

    Google Scholar 

  15. Gao, H.-Ye (1993). Wavelet estimation of spectral densities in time series analysis. Ph.D. dissertation. University of California, Berkeley.

    Google Scholar 

  16. Jakes, W. C. (1974).Mobile Radio Propagation. Microwave Mobile Communications, Ch. 1, Wiley, New York.

    Google Scholar 

  17. Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics. Continuous Univariate Distributions - 1, 2. Wiley, New York.

    Google Scholar 

  18. Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1992). Estimation d’une densité de probabilité par méthode d’ondelettes.Comptes Rendus Acad. Sciences Paris (A)315 211–216.

    MathSciNet  MATH  Google Scholar 

  19. Meyer, Y. (1991). Ondelettes sur 1’intervalle.Revista Mathematica Ibero-Americana 7(2), 115–133.

    MATH  Google Scholar 

  20. Nason, G. P. (1994). Wavelet regression by cross-validation. Preprint, Department of Mathematics, University of Bristol.

    Google Scholar 

  21. Nemirovskii, A. S. (1985). Nonparametric estimation of smooth regression functions.Izv. Akad. Nauk SSR Techn. Kibernet.3, 50–60 (in Russian).

    MathSciNet  Google Scholar 

  22. Nemirovskii, A. S., Polyak, B. T. and Tsybakov, A. B. (1985). Rate of convergence of nonparametric estimates of maximum-likelihood type.Problems of Information Transmission 21, 258–272.

    MathSciNet  Google Scholar 

  23. Neumann, M. H. (1994). Spectral density estimation via nonlinear wavelet methods for stationary non-Gaussian time series. Manuscript.

    Google Scholar 

  24. Neumann, M. H. and Spokoiny, V. G. (1995). On the efficiency of wavelet estimators under arbitrary error distributions.Math. Methods of Statist., to appear.

    Google Scholar 

  25. Neumann, M. H. and von Sachs, R. (1994). Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Discussion Paper No. 24/95, SFB 373, Humboldt University, Berlin, and Technical Report “Berichte der AG Technomathematik” No. 132, University of Kaiserslautern.

    Google Scholar 

  26. Nikol’skii, S. M. (1975).Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York.

    Google Scholar 

  27. Nussbaum, M. (1994). Asymptopic equivalence of density estimation and white noise, to appearAnn. Statist.

    Google Scholar 

  28. Patil, P. (1994). Nonparametric hazard rate estimation. Statistics Research Report No. SRR 018–94, Centre for Mathematics and its Applications, Australian National University.

    Google Scholar 

  29. Priestley, M. B. (1981).Spectral Analysis and Time Series. Vol. 2, Academic Press, London.

    Google Scholar 

  30. Rudzkis, R., Saulis, L. and Statulevicius, V. (1978). A general lemma on probabilities of large deviations.Lithuanian Math.J.18, 226–238.

    Article  MathSciNet  MATH  Google Scholar 

  31. von Sachs, R. and Schneider, K. (1994). Wavelet smoothing of evolutionary spectra by non-linear thresholding. Technical Report “Berichte der AG Technomathematik” No. 106, University of Kaiserslautern.

    Google Scholar 

  32. Sakhanenko, A. I. (1991). On the accuracy of normal approximation in the invariance principle.Siberian Advances in Mathematics 1, 58–91.

    MathSciNet  Google Scholar 

  33. Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.

    MATH  Google Scholar 

  34. Statulevicius, V. and Jakimavicius, D. (1988). Estimates of semiinvariants and centered moments of stochastic processes with mixing I.Lithuanian Math. J. 28, 67–80.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York

About this chapter

Cite this chapter

Neumann, M.H., von Sachs, R. (1995). Wavelet Thresholding: Beyond the Gaussian I.I.D. Situation. In: Antoniadis, A., Oppenheim, G. (eds) Wavelets and Statistics. Lecture Notes in Statistics, vol 103. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2544-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2544-7_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94564-4

  • Online ISBN: 978-1-4612-2544-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics