Skip to main content

Wavelets and Markov Random Fields in a Bayesian Framework

  • Chapter
Wavelets and Statistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 103))

Abstract

The paper introduces a Bayesian framework for wavelet coefficients. Particularly aimed at efficient implementations and at higher-dimensional wavelet transforms, the method is based on a Markov Random Field description of the coefficients. The Bayesian approach allows to impose various types of constraints on the interactions of coefficients that are neighbours in the MRF. Several applications that are based on a manipulation of wavelet coefficients can benefit from this approach. This is illustrated with an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.E. Besag. Spatial interaction and the spatial analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36: 192–236, 1974.

    MathSciNet  MATH  Google Scholar 

  2. D.L. Donoho . Wavelet shrinkage and wavelet-vaguelette decomposition: a 10-minute tour. InProc. Int’l. Conf. on Wavelets and Applications, June 1992.

    Google Scholar 

  3. D.L. Donoho and I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage.Biometrika, 81 (3):p. 425, September 1994.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.L. Donoho and I. M.Johnstone. Adapting to unknown smoothness via wavelet shrinkage.J. Amer. Statist. Assoc., 1995. To appear.

    Google Scholar 

  5. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.IEEE Trans. Patt. Anal. Mach. Intell., 6 (6): 721–741, 1984.

    Article  MATH  Google Scholar 

  6. B. Jawerth and W. Sweldens. An overview of wavelet based multiresolution analyses.SIAM Rev., 36 (3): 377–412, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Kato, M. Berthod, and J. Zerubia. Parallel image classification using multiscale Markov Random Fields. InProceedings of the 1993 IEEE International Conference on Acoustics, Speech and Signal Processing, pages V-137–140, 1993.

    Chapter  Google Scholar 

  8. R. Kindermann and J. Snell.Markov Random Fields and their application. Contemporary mathematics 1. American Mathematical Society, Providence (RI), 1980.

    Google Scholar 

  9. M.R. Luettgen.Image processing with multiscale stochastic models. PhD thesis, Massachusetts Institute of Technology, 1993.

    Google Scholar 

  10. M. R. Luettgen, W. C. Karl, A. S. Willsky, and R. R. Tenney. Multiscale representations of Markov Random Fields.IEEE Trans. Signal Process., 41 (12): 3377–3395, December 1993.

    Article  MATH  Google Scholar 

  11. M. Malfait and D. Roose. Convergence of concurrent Markov Chain Monte Carlo algorithms.Concurrency: Practice and Experience 1995. To appear.

    Google Scholar 

  12. M. Malfait and D. Roose. Wavelet based image denoising using a Markov Random Field prior model. TW Report, K.U.Leuven, Department of Computer Science, Leuven, Belgium, 1995.

    Google Scholar 

  13. S. Mallat and W. L. Hwang. Singularity detection and processing with wavelets.IEEE Trans. Inform. Theory, 38 (2): 617–643, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Metropolis, M. Rosenbluth, et al. Equation of state calculations by fast computing machines.Journal of Chemical Physics, 21: 1087–1092, 1953.

    Article  Google Scholar 

  15. B. Vidakovic . Nonlinear wavelet shrinkage with Bayes rules and Bayes factors. Preprint, Duke University, Durham, NC, 1994.

    Google Scholar 

  16. G. Winkler.Image analysis, random fields and dynamic Monte Carlo methods. Applications of Mathematics. Springer, 1995.

    Google Scholar 

  17. Y. Xu, J. B. Weaver, D. M. Healy, and J. Lu. Wavelet transform domain filters: a spatially selective noise filtration technique.IEEE Trans. Image Process, 3 (6): 747–758, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York

About this chapter

Cite this chapter

Malfait, M., Roose, D. (1995). Wavelets and Markov Random Fields in a Bayesian Framework. In: Antoniadis, A., Oppenheim, G. (eds) Wavelets and Statistics. Lecture Notes in Statistics, vol 103. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2544-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2544-7_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94564-4

  • Online ISBN: 978-1-4612-2544-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics