Nonparametric Supervised Image Segmentation by Energy Minimization using Wavelets

  • Jacques Istas
Part of the Lecture Notes in Statistics book series (LNS, volume 103)


Energy models, like the Mumford and Shah model, have been introduced for segmenting images. The boundary, defined as the minimum of the energy, is projected onto a wavelet basis. We assume a white noise model on the observed image. The aim of this paper is to study the asymptotic behavior of non-parametric estimators of the boundary when the number of pixels grows to infinity.


Energy Minimization Image Segmentation Wavelet Basis Initial Contour Segmentation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AZ]
    Azencott, R.: Image analysis and markov fields. InProceedings of ICIAM. SIAM (1987).Google Scholar
  2. [BZ]
    Blake, A., Zisserman, A.: Visual reconstruction. MIT Press (1987).Google Scholar
  3. [BR]
    Brezis, H.: Analyse fonctionnelle, Théorie et applications. Masson, Paris (1983).MATHGoogle Scholar
  4. [DAU1]
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. on Pure and Appl. Math.41(1988) 909–996.MathSciNetMATHGoogle Scholar
  5. [DAU2]
    Daubechies, I.: Ten lectures on wavelets, volume61. SIAM (1992).MATHGoogle Scholar
  6. [DL]
    Dautray, R., Lions, J.-L.: Analyse mathénatique et calcul numérique. volume2. Masson, Paris (1987).Google Scholar
  7. [DoC]
    Do Carmo, J.: Differential Geometry of Curves and Surfaces. Prentice-Hall (1976).MATHGoogle Scholar
  8. [GY]
    Geiger, D., Yuille, A.: A common framework for image segmentation. Inter. J. Comp. Vision.6(1991) 227–243.CrossRefGoogle Scholar
  9. [GG]
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of Images. IEEE Trans., PAMI.6(1984) 721–741.MATHCrossRefGoogle Scholar
  10. [GR]
    Grenander, U.: Abstract inference. Wiley, New-York (1981).MATHGoogle Scholar
  11. [GCK]
    Grenander, U., Chow, Y., Keenan, D.: Hands, a Pattern Theoretic Study of Biological Shapes. Springer-Verlag, New-York (1991).Google Scholar
  12. [IH]
    Ibragimov, I., Has’minskii, R.: Statistical estimation, Asymptotic theory. Springer-Verlag, New York (1981).MATHGoogle Scholar
  13. [KWT]
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Inter. J. Comp. Vision.1(4) (1988) 321–331.CrossRefGoogle Scholar
  14. [KT]
    Korostelev, A., Tsybakov, A.: Minimax theory of image reconstruction. Springer-Verlag, New York (1993).MATHCrossRefGoogle Scholar
  15. [ME]
    Meyer, Y.: Ondelettes et Opérateurs. volume 1. Hermann, Paris (1990).Google Scholar
  16. [MS1]
    Morel, J., Solimini, S.: Segmentation of images by variational methods: a constructive approach. Revista Matematica de la Universita Complutense de Madrid.1(1) (1988) 169–182.MathSciNetMATHGoogle Scholar
  17. [MS2]
    Morel, J., Solimini, S.: Variational methods in image segmentation. Birkhauser,.To appear.Google Scholar
  18. [MU]
    Mueller, H.-G.: Nonparametric regression analysis of longitudinal data. Springer-Verlag (1987).Google Scholar
  19. [MSH]
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. on Pure and Appl. Math. 42 (5) (1989) 577 - 685.MathSciNetMATHCrossRefGoogle Scholar
  20. [RK1]
    Rosenfeld, A., Kak, A.: Digital picture processing, volume1. Academic-Press, London (1982).Google Scholar
  21. [RK2]
    Rosenfeld, A., Kak, A.: Digital picture processing, volume2. Academic-Press, London (1982).Google Scholar
  22. [RS]
    Rudemo, M., Stryhn, H.: Approximating the distribution of maximum likelihood contour estimators in two-region images. Scand. J. Statist.21(1994) 4–56.MathSciNetGoogle Scholar
  23. [RK]
    Rudemo, M., Tsybakov, A.: Estimation of a linear boundary in white noise. Preprint.Google Scholar
  24. [RU]
    Rudin, W.: Real and complex analysis. McGraw-Hill, New-York (1966).MATHGoogle Scholar
  25. [ST]
    Storvik, G. A Bayesian approach to dynamic contours and data-reduction by projections for multivariate spatial images. PhD thesis, University of Oslo (1992).Google Scholar

Copyright information

© Springer-Verlag New York 1995

Authors and Affiliations

  • Jacques Istas
    • 1
  1. 1.Laboratoire de BiometriéDomaine de Vilvert, I.N.R.A.Jouy-en-JosasFrance

Personalised recommendations