Skip to main content

Impaired Signal Transduction in Tumor Infiltrating T Cells from Patients with Renal Cell Carcinoma

  • Conference paper
Biology of Renal Cell Carcinoma

Abstract

T cell activation in response to antigen requires interaction of multiple receptor-coreceptor pairs (1–3). Important outcomes of T cell stimulation include cellular proliferation, cytokine secretion and cytotoxic activity (1). The induction of these various functions is dependent on the activation of intracellular signal transduction pathways which are linked to the different receptors (4). Activation of the T-cell receptor complex (TCR-CD3) involves antigen recognition through the α /β subunits and intracellular signaling via CD3 (γ,δ,ε) and ζ chains (1,2,5). Tyrosine phosphorylation of several proteins such as TCR ζ, CD3 ε, and phospholipase C- γ represent an important early event (1,2, 4–6). Three different proteins kinases (PTK) have been implicated in TCR/CD3 signaling and they include p56lck, p59fyn and ZAP-70 (2,4,5,7–9). Tyrosine phosphorylation leads to several intermediate signaling events that include the formation of second messengers and the activation of serine/threonine kinases along with phosphatases which are important for downstream gene expression (4). IL2 binding to its receptor is an important step in T cell activation and proliferation (10). This receptor is a trimolecular complex in which the IL2Rα chain is necessary for high affinity receptor expression while the β and γ chains are involved in signal transduction (11–14). Although the IL2R signaling pathway is not well defined, tyrosine phosphorylation of several substrates appears to be an essential early event (12,14–16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss A, and Imboden JB: Cell surface molecules and early events involved in human T lymphocyte activation. Adv Immunol. 41:1–38, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Rudd CE, Anderson P, Morimoto C, Strevli M, and Schlossman SF: Molecular Interaction, T-cell subsets and a role of the CD4/CD8:p561ck complex in human T-cell activation. Immunol Reviews 111:224–267, 1989.

    Article  Google Scholar 

  3. Schwartz, RH: Costimulation ofT lymphocytes: The role of CD28, CTLA-4, and B7/BB1 in Interleukin-2 production and immunotherapy. Cell 171:1065–1068, 1992.

    Article  Google Scholar 

  4. Altman A, Coggeshall KM, and Mustelin T: Molecular events mediating T cell activation. Advances in Immunology 48:2227–2360, 1990.

    Article  Google Scholar 

  5. Weiss, A: T cell antigen receptor signal transduction: A tale of tails and cytoplasmic protein-tyrosine kinases. Cell 171:73:209–212, 1993.

    Google Scholar 

  6. June CH, Fletcher MC, Ledbetter JA, and Samelson LE: Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J Immunol 144:1591–1599, 1990.

    PubMed  CAS  Google Scholar 

  7. Samelson LE, Phillips AF, Luong ET, and Klausner RD: Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor. Proc Natl Acad Sci USA 87:4358–4362, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Veillette A, Bookman MA, Horak EM, Samelson LE, and Bolen JB: Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p561ck. Nature 338:257–261, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Chan AC, Irving BA, Frazer JD and Weiss A: The z chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associated with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc Natl Acad Sci 88:9160–9170, 1991.

    Google Scholar 

  10. Cantrell DA, and Smith KA: The interleukin-2 T cell system: a new cell growth model. Science 224:1312–1316, 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Hatakeyama M, Tsudo M, Minamoto S, Kono T, Doi T, Miyata T, Miyasaka M, and Taniguchi T. Interleukin-2 receptor b chain gene: generation of three receptor forms by cloned human a and b chain cDNA’s. Science 244:551–555, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Asao H, Kumaki S, Takeshita T, Nakamura M, and Sugamura K: IL-2-dependent in vivo and in vitro tyrosine phosphorylation of IL-2 receptor g chain. FEBS Letters 304:141–145, 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Voss SD, Leary TP, Sondel PM, and Robb RJ: Identification of a direct interaction between interleukin 2 and the p64 interleukin 2 receptor g chain. Proc Natl Acad Sci USA 90:2428–2432, 1993.

    Google Scholar 

  14. Mills GB, May C, McGill M, Fung M, Baker M, Sutherland R, and Greene WC: Interleukin 2 induced tyrosine phosphorylation, Interleukin 2 receptor b is tyrosine phosphorylated. J Biol Chem 265:3461–3567, 1990.

    Google Scholar 

  15. Horak ID, Gress RE, Lucas PJ, Horak EM, Waldmann TA, and Bolen JB: T-lymphocyte interleukin 2-dependent tyrosine protein kinase signal transduction involves the activation of the p561ck. Proc Natl Acad Sci 88:1996–2000, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Minami Y, Kono T, Yamada K, Kobayashi N, Kawahara A, Perlmutter RM, and Taniguchi T: Association of p561ck with IL2 receptor ß chain is critical for the IL2-induced activation of p561ck. EM BO J 12:759–765, 1991.

    Google Scholar 

  17. Ullman KS, Northrop JP, Verweij CL, and Crabtree GR: Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: The missing link. Ann Rev Immunol 8:421–452,1990.

    Article  CAS  Google Scholar 

  18. Rosenberg SA, Spiess P, and Lafreniere R: A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science (Wash DC) 233:1318–1321, 1986.

    Article  CAS  Google Scholar 

  19. Spiess PJ, Yang JC, and Rosenberg SA: In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin 2. J. Natl Cancer Inst. 75: 1067–1075, 1987.

    Google Scholar 

  20. Itoh K, Tilden AB, and Balch CM: Interleukin 2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas. Cancer Res. 46:3011–3017,1986.

    PubMed  CAS  Google Scholar 

  21. Muul LM, Spiess PJ, Director EP, and Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J. Immunol. 138:989–995, 1987.

    PubMed  CAS  Google Scholar 

  22. Ioannides CG, Freedman RS, Platosoucas CD, Rashad S, and Kim YP. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells. J. Immunol. 146:1700–17007,1991.

    PubMed  CAS  Google Scholar 

  23. Letesjier EM, Heo DS, Okarma T, Johnson JT, Herberman RB, and Whiteside TL. Enrichment in tumor-reactive CD8+ T-lymphocytes by positive selection from the blood and lymph nodes of patients with head and neck cancer. Cancer Res. 51:3891–3899, 1991.

    Google Scholar 

  24. Jerome KR, Brand DL, Bendt KM, Boyer C, Taylor-papadimtriou J, McKenzie I, Bast R, and Finn O. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res. 51:2908–2916, 1991.

    PubMed  CAS  Google Scholar 

  25. Koo AS, Tso C-L, Shimabukuro T, Peyret C, deKernion JB, and Belldegrun A: Autologous tumor-specific cytotoxity of tumor-infiltrating lymphocyes derived from human renal cell carcinoma. J. Immunother. 10:347–354, 1991.

    Article  PubMed  CAS  Google Scholar 

  26. Finke JH, Rayman P, Edinger M, Tubbs RR, Stanley J, Klein E, and Bukowski R: Characterization of a human renal cell carcinoma specific cytotoxic CD8 + T cell line. J Immunotherapy 11:1–11, 1991.

    Article  Google Scholar 

  27. Finke JH, Rayman P, Hart L, Alexander JP, Edinger MG, Tubbs RR, Klein E, Tuason L, and Bukowski RM: Characterization of TIL subsets from human renal cell carcinoma: Specific reactivity defined by cytotoxicity, IFNy secretion and proliferation. J Immunotherapy 15:91–104,1994.

    Article  CAS  Google Scholar 

  28. Schendel DJ, GansbacherB, Obemeder R, Kriegmair M, HofstetterA, Riethmuller G, and Segurado OG. Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes. I. HLA-A2 restricted recognition of autologous and allogeneic tumor lines. J Immunol. 151:4209–4220, 1993.

    PubMed  CAS  Google Scholar 

  29. Broder S, and Waldmann TA: The suppressor-cell network in cancer. N Engl J Med 299:1281–1284, 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Hersh EM, and Oppenheim JJ: Impaired in vitro lymphocyte transformation in Hodgkin’s disease. N Engl Med 273:1006–1012, 1967.

    Article  Google Scholar 

  31. Oliver RT, and Nouri AM: T cell immune response to cancer in humans and its relevance for immunodiagnosis and therapy. Cancer Sury 13:173–180, 1992.

    CAS  Google Scholar 

  32. Pisa P, Halapi E, Pisa E, Gerdin E, Hising C, Bucht A, Gerdin B, and Kiessling R. Selective expression of interleukin 10, interferon-y and granulocyte-macrophage colony-stimulating factor in ovarian cancer biopsies. Proc. Natl. Acad. Sci. 89:7708–7713, 1992.

    Article  PubMed  CAS  Google Scholar 

  33. Gastl GA, Abrams JS, Nanus DM, Osterkamp R, Silver J, Liu F, Chen M, Albino AP, and Bander NH: Interleukin-10 production by human carcinoma cell lines and its relationship to interleukin-6 expression. Int. J. Cancer, 55:96–101, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Roszman T, Elliott L, and Brooks VV: Modulation of T-cell function by gliomas. Immunology Today 12:370–375, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Mischer S, Whiteside TL, Carrel C, and Von Fliedner V: Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J Immunol 136:1899–1907, 1986.

    Google Scholar 

  36. Yoshino I, Yuno T, Murata M, Ishida T, Sugimachi K, Kimura G, and Nomoto K: Tumor-reactive T-cells accumulate in lung cancer tissues but fail to respond due to tumor cell-derived factor. Cancer Res 52:775–781, 1992.

    PubMed  CAS  Google Scholar 

  37. Alexander JP, Kudoh S, Melsop KA, Hamilton TA, Edinger MG, Tubbs RR, Sica D, Tuason L, Klein E, Bukowski RM, and Finke JH: T-cell infiltrating renal cell carcinoma display a poor proliferative response even though they can produce IL-2 and express IL2 receptors. Cancer Res 53:1380–1387, 1993.

    PubMed  CAS  Google Scholar 

  38. Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, and Ochoa A: Alterations in signal transduction molecules in T lymphocytes from tumor bearing mice. Science 258:1795–1798, 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Finke JH, Zea AH, Stanley J, Longo DL, Hiromoto M, Tubbs RR, Wiltrout RH, O’Shea JJ, Kudoh S, Klein E, Bukowski RM, and Ochoa AC: Loss of T-cell receptor z chain and p561ck in T-cell infiltrating human renal cell carcinoma. Cancer Research 53:5613–5616, 1993.

    PubMed  CAS  Google Scholar 

  40. Nakagomi H, Petersson M, Magnusson I, Juhlin C, Matsuda M, Mellstedt H, Taupin J-L, Vivier E, Anderson P, and Kiesslin R: Decreased expression of the signal-transducing z chains in tumor-infiltrating T cells and NK cells of patients with colorectal carcinoma. Cancer Res 53:5610–5612, 1993

    PubMed  CAS  Google Scholar 

  41. Narumi, S., Tebo, J. M., Finke, J. H., and Hamilton, T. A: IFN-g and IL-2 cooperatively activate NFkB in murine peritoneal macrophages. J. Immunol. 149:529–534, 1992.

    PubMed  CAS  Google Scholar 

  42. Kudoh, S., Stanley, J., Edinger, M. G., Tubbs, R. R., Klein, E., Bukowski, R. M., and Finke, J: T lymphocytes infiltrating renal cell carcinoma have a reduced expression of the transferrin receptor. Inter J. Cancer 58:1–7, 1994.

    Google Scholar 

  43. Neckers LM, and Cossman J: Transferrin receptor induction in mitogenstimulated human T lymphocytes is required for DNA synthesis and cell division and is required by interleukin 2. Proc. Natl. Acad. Sci. 80:3494–3498, 1983.

    Article  PubMed  CAS  Google Scholar 

  44. Barnes D, and Sato G: Serum free cell culture: a unifying approach. Cell 22:649, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Klausner RD, van Renswoude J, Ashwell G, Kempf G, Scheuhter AN, Dean A, and Bridges K: Receptor-mediated endocytosis o f trans ferrin in K562. J Bio Chem 258:4715–4724, 1983.

    CAS  Google Scholar 

  46. Terada N, Or R, Szepesi A, Lucas JJ, and Gelfand EW: Definition of the roles for iron and essential fatty acids in cell cycle progression of normal human T lymphocytes. Exp Cell Res 204:260–267, 1993.

    Article  PubMed  CAS  Google Scholar 

  47. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang C-M, and Livingston DM: The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58:1085–1095, 1989.

    Article  PubMed  CAS  Google Scholar 

  48. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, and Weinberg RA: Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70:993–1006, 1992.

    Article  PubMed  CAS  Google Scholar 

  49. Wiman KG: The retinoblastoma gene: role in cell cycle control and cell differentiation. FASEB 7:841–845. 1993.

    CAS  Google Scholar 

  50. Masson D, and Tschopp J: A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49:679–685, 1987.

    Article  PubMed  CAS  Google Scholar 

  51. Loeffler CM, Smyth MJ, Long DL, Kopp WC, Harvey LK, Tribble HR, Tase JE, Urbo WJ, Leonard AS, Young HR, and Ochoa AC: Immunoregulation in cancer-bearing hosts: down regulation of gene expression and cytotoxic function in CD8+ T cells. J Immunol. 149:949–956, 1992.

    Google Scholar 

  52. Ikemoto S, Wada S, Kamizuru M, Hayahara N, Kishimoto T, and Maekawa M: Clinical studies on cell-mediated immunity in patients with renal cell carcinoma: interleukin-2 and interferon-g production of lymphocytes. Cancer Immunol Immunother. 34:289–293, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Sen, R., and Baltimore, D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716, 1986.

    Article  PubMed  CAS  Google Scholar 

  54. Nolan, G. P., and Baltimore, D: The inhibitory ankyrin and activator Rel proteins. Current Opinion in Genetics and Development. 2:211–220, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. Kang, S-M., Tran, A-C., Grilli, M., and Leonardo, M. J: NF-kB subunit regulation in nontransformed CD4+ T lymphocytes. Science 256:1452–1456, 1992.

    Article  PubMed  CAS  Google Scholar 

  56. Ghosh, P., Sica, A., Young, H. A., Ye, J., Franco, J. L., Wiltrout, R. H., Longo, D. L., Rice, N. R., and Komschlies, K. L: Alterations in NFkB/Rel family proteins in splenic T-cells from tumor-bearing mice and reversal following therapy. Cancer Res. 54:2969–2972, 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York Inc.

About this paper

Cite this paper

Finke, J. et al. (1995). Impaired Signal Transduction in Tumor Infiltrating T Cells from Patients with Renal Cell Carcinoma. In: Biology of Renal Cell Carcinoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2536-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2536-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7571-8

  • Online ISBN: 978-1-4612-2536-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics