Evaluating Causes and Mechanisms of Succession in the Mediterranean Regions in Chile and California

  • Juan J. Armesto
  • Patricia E. Vidiella
  • Hector E. Jiménez
Part of the Ecological Studies book series (ECOLSTUD, volume 108)

Abstract

Succession is a central concept of ecology. Understanding the causes and mechanisms that change vegetation in ecological time can help answer practical (management) as well as theoretical (community-assemblage) questions. Approaches based on accepting one or a few broadly applicable mechanisms have proved disappointing (e.g., Connell and Slatyer 1977; Finnegan 1984). A modern view of succession requires that we consider the multiple forces that drive vegetational change and their interactions (Pickett et al. 1987; Walker and Chapin 1987; Burrows 1990). In this chapter we use a multifactorial analysis to compare successional mechanisms in two regions distinguished by broad climatic and physiognomic resemblance: central Chile and California (Thrower and Bradbury 1977).

Keywords

Biomass Alba Kelly Burrows Hanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armesto JJ, Gutiérrez JR (1978) El efecto del fuego en la estructura de la vegetación de Chile central. Anal Mus Hist Nat, Valparaíso 11:43–48Google Scholar
  2. Armesto JJ, Martínez, JA (1978) Relations between vegetation structure and slope aspect in the mediterranean region of Chile. J Ecol 66:881–889CrossRefGoogle Scholar
  3. Armesto JJ, Pickett STA (1985) A mechanistic approach to the study of succession in the Chilean matorral. Rev Chil Hist Nat 58:9–17Google Scholar
  4. Arroyo MTK, Uslar P (1993) Breeding systems in a temperate mediterranean-type climate montane sclerophyllous forest in central Chile. Bot J Linn Soc 111:83–102CrossRefGoogle Scholar
  5. Aschmann, H (1977) Aboriginal use of fire. In Proc Sym Env Cons Fire and Fuel Man Medit Ecosys. Gen Tech Rep WO-3, USDA For Serv, Washington, DC, pp 132–140Google Scholar
  6. Aschmann H, Bahre CJ (1977) Man’s impact on the wild landscape. In Mooney HA (ed) Convergent Evolution in Chile and California. Dowden, Hutchinson & Ross, Stroudsburg, PA, pp 73–84Google Scholar
  7. Axelrod DI (1989) Age and origin of chaparral. In Keeley SC (ed), The California Chaparral: Paradigms Reexamined. Sci Ser No. 34. Nat Hist Mus LA County, Los Angeles, CA, pp 7–19Google Scholar
  8. Bartholomew B (1970) Bare zone between California shrub and grassland communities: The role of animals. Science 170:1210–1212PubMedCrossRefGoogle Scholar
  9. Burrows CJ (1990) Processes of Vegetation Change. Unwin Hyman, LondonGoogle Scholar
  10. Bustamante R (1992) Granivoría y espaciamiento entre plántulas y sus plantas madres: El efecto de la distancia entre plantas madres. Ph.D. Thesis Facultad de Ciencias, U ChileGoogle Scholar
  11. CONAF (1986) Estadísticas sobre plan de manejo del fuego 1964–1986. Centro de Documentación Estadística, Departamento de Manejo del Fuego, Corporación Nacional Forestal, Santiago, ChileGoogle Scholar
  12. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  13. DeBano LF, Conrad CE (1978) The effect of fire on nutrients in a chaparral ecosystem. Ecology 59:489–497CrossRefGoogle Scholar
  14. Ellis BA, Kummerow J (1989) Structure and function in chaparral shrubs. In Keeley SC (ed), The California Chaparral: Paradigms Reexamined. Sci Ser No. 34. Nat Hist Mus LA County. Los Angeles, CA, pp 140–150Google Scholar
  15. Finnegan B (1984) Forest succession. Nature 312:109–114CrossRefGoogle Scholar
  16. Fuentes ER, Le Boulenge PY (1977) Prédation et compétition dans la dinamique d’une communauté herbacée secondaire du Chili central. Terre et Vie 31:313–326Google Scholar
  17. Fuentes ER, Simonetti JA (1982) Plant patterning in the Chilean matorral: Are the roles of native and exotic mammals different? In Proc Sym Dyn Man Medit Ecosys. Gen Tech Rep PSW-58 USDA For Serv, Berkeley, CA, pp 227–233Google Scholar
  18. Fuentes ER, Jaksic FM, Simonetti JA (1983) European rabbits vs. native mammals: Effects on shrub seedlings. Oecologia 58:411–414CrossRefGoogle Scholar
  19. Fuentes ER, Otaiza RD, Alliende MC, Hoffmann A, Poiani A (1984) Shrub clumps of the Chilean matorral vegetation: Structure and possible maintenance mechanisms. Oecologia 64:405–411CrossRefGoogle Scholar
  20. Fuentes ER, Hoffmann AJ, Poiani A, Alliende MC (1986) Vegetation change in large clearings: Patterns in the Chilean matorral. Oecologia 68:358–366CrossRefGoogle Scholar
  21. Fuentes ER, Espinoza GA, Gajardo G (1987) Allelopathic effects of the Chilean matorral shrub Flourensia thurifera. Rev Chil Hist Nat 60:57–62Google Scholar
  22. Glanz WE, Meserve PL (1982) An ecological comparison of small mammal communities in California and Chile. In Proc Sym Dyn Man Medit Ecosys. Gen Tech Rep PSW-58 USDA For Serv, BerkeleyGoogle Scholar
  23. Hanes TL (1971) Succession after fire in the chaparral of southern California. Ecol Mono 41:27–52CrossRefGoogle Scholar
  24. Hanes TL (1981) California Chaparral. In di Castri F, Goodall DW, Specht RL (eds) Ecosystems of the World 11: Mediterranean-Type Shrublands. Elsevier, Amsterdam, pp 139–174Google Scholar
  25. Hanes TL, Jones HW (1967) Postfire chaparral succession in southern California. Ecology 48:259–264CrossRefGoogle Scholar
  26. Heusser CJ (1983) Quaternary pollen record from Laguna de Tagua Tagua, Chile. Science 219:1429–1431PubMedCrossRefGoogle Scholar
  27. Jaksic FM, Soriguer RC (1981) Predation upon the European rabbit (Oryctolagus cuniculus) in mediterranean habitats of Chile and Spain: A comparative analysis. J An Ecol 50:269–281CrossRefGoogle Scholar
  28. Jaksic FM, Fuentes ER, Yañez JL (1979) Spatial distribution of the old world rabbit (Oryctolagus cuniculus) in central Chile. J Mam 60:206–209Google Scholar
  29. Jiménez HE, Armesto JJ (1992) Importance of the soil seed bank of disturbed sites in Chilean matorral in early secondary succession. J Veg Sci 3:579–586CrossRefGoogle Scholar
  30. Keeley JE (1977) Fire-dependent reproductive strategies in Arctostaphylos and Ceanothus. In Proc Sym Envir Cons Fire Fuel Man Medit Ecosys. Gen Tech Rep WO-3, USDA For Serv, Washington DC, pp 391–396Google Scholar
  31. Keeley JE (1982) Distribution of lightning and man-caused wildfires in California. In Proc Sym Dyn Man Medit Ecosys. Gen Tech Rep PSW-58 USDA For Serv, Berkeley, pp 431–437Google Scholar
  32. Keeley JE, Keeley SC (1981) Post-fire regeneration of southern California chaparral. Am J Bot 68:524–530CrossRefGoogle Scholar
  33. Keeley SC, Keeley JE, Hutchinson SM, Johnson AW (1981) Postfire succession of the herbaceous flora in southern California chaparral. Ecology 62:1608–1621CrossRefGoogle Scholar
  34. Keeley JE, Morton BA, Pedrosa A, Troter P (1985) The role of allelopathy, heat and charred wood in the germination of chaparral herbs and suffrutescents. J Ecol 73:445–458CrossRefGoogle Scholar
  35. Martinez JA, Armesto JJ (1983) Ecophysiological plasticity and habitat distribution in three evergreen species of the Chilean matorral. Oecol Plant 4:211–219Google Scholar
  36. McBride JR (1974) Plant succession in the Berkeley hills, California. Madroño 22: 317–329Google Scholar
  37. McPherson JK, Muller CH (1969) Allelopathic effects of Adenostoma fasciculatum, Chamise, in the California chaparral. Ecol Mono 39:177–198CrossRefGoogle Scholar
  38. Mills JN (1986) Herbivores and early postfire succession in southern California chaparral. Ecology 67:1637–1649CrossRefGoogle Scholar
  39. Mills JN, Kummerow J (1989) Herbivores, seed predators, and chaparral succession. In Keeley SC (ed) The California Chaparral: Paradigms Reexamined. Sci Ser No. 34. Nat Hist Mus LA County, Los Angeles, CA, pp 49–55Google Scholar
  40. Minnich RA (1989) Chaparral fire history in San Diego county and adjacent northern Baja California: An evaluation of natural fire regimes and the effects of suppression management. In Keeley SC (ed) The California Chaparral: Paradigms Reexamined. Sci Ser No. 34. Nat Hist Mus LA County. Los Angeles, CA, pp 37–47Google Scholar
  41. Montenegro G, Rivera O, Bas F (1978) Herbaceous vegetation in the Chilean matorral. Dynamics of growth and evaluation of allelopathic effects of some dominant shrubs. Oecologia 36:237–244CrossRefGoogle Scholar
  42. Mooney HA, ed. (1977) Convergent Evolution in Chile and California: Mediterranean Climate Ecosystems. Dowden, Hutchinson & Ross, Stroudsburg, PAGoogle Scholar
  43. Muñoz MR, Fuentes ER (1989) Does fire induce shrub germination in the Chilean matorral? Oikos 56:177–181CrossRefGoogle Scholar
  44. Ovalle C, Aronson J, Del Pozo A, Avendaño J (1990) The espinal: Agroforestry systems of the mediterranean-type climate region of Chile. Agrofor Sys 10:213–239CrossRefGoogle Scholar
  45. Parker VT, Kelly VR (1989) Seed banks in California chaparral and other mediterranean climate shrublands. In Leck MA, Parker VT, Simpson RL (eds) Ecology of Soil Seed Banks. Academic Press, New York, pp 231–255Google Scholar
  46. Peralta I, Rodríguez J, Arroyo MTK (1992) Breeding systems and aspects of pollination in Acacia caven (Mol.) Mol. (Leguminosae: Mimosoideae) in the mediterranean type climate zone of central Chile. Botanische Jahrbucher 114:297–314Google Scholar
  47. Pickett STA, Armesto JJ (1991) The theoretical motivation for ecological comparisons. Rev Chil Hist Nat 64:391–398Google Scholar
  48. Pickett STA, McDonell MJ (1989) Changing perspectives in community dynamics: A theory of successional forces. Trends Ecol Evol 4:241–245PubMedCrossRefGoogle Scholar
  49. Pickett STA, Collins SL, Armesto JJ (1987) Models, mechanisms and pathways of succession. Bot Rev 53:335–371CrossRefGoogle Scholar
  50. Rundel PW, Neel JW (1978) Nitrogen fixation by Trevoa trinervis (Rhamnaceae) in the Chilean matorral. Flora 167:127–132Google Scholar
  51. Silvester WB, Balboa O, Martínez JA (1985) Nodulation and nitrogen fixation in members of the Rhamnaceae (Colletta, Retanilla, Talguenea and Trevoa) growing in the Chilean matorral. Simbiosis 1:29–38Google Scholar
  52. Thrower NJW, Bradbury DE (eds) (1977) Chile-California Mediterranean Scrub Atlas: A Comparative Analysis. Dowden, Hutchinson and Ross, Stroudsburg, PAGoogle Scholar
  53. Vogl RJ (1982) Chaparral succession. In Conrad CE, Oechl WC (eds) Proc Sym Dyn Man Medit Ecosys. Gen Tech Rep PSW-58 USDA For Serv. Berkeley, pp 81–85Google Scholar
  54. Walker LR, Chapin III FS (1987) Interactions among processes controlling successional change. Oikos 50:131–135CrossRefGoogle Scholar
  55. White PS (1979) Pattern, process and natural disturbance in vegetation. Bot Rev 45: 229–299CrossRefGoogle Scholar
  56. Zedier PH, Zammit CA (1989) A population-based critique of concepts of change in the chaparral. In Keeley SC (ed) The California Chaparral: Paradigms Reexamined. Sci Ser No. 34. Nat Hist Mus LA County. Los Angeles, CA, pp 73–83Google Scholar
  57. Zedier PH, Gautier CR, McMaster GS (1983) Vegetation change in response to extreme events: The effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64:809–818CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Juan J. Armesto
  • Patricia E. Vidiella
  • Hector E. Jiménez

There are no affiliations available

Personalised recommendations