Skip to main content

The Myocardium: Physiology and Protection During Cardiac Surgery and Cardiopulmonary Bypass

  • Chapter
Cardiopulmonary Bypass

Abstract

With the advent of endotracheal intubation and positive pressure ventilation in the 1940s, operative access to intrathoracic structures became possible. But the interior of the heart remained forbidden territory to the surgeon. Cardiopulmonary bypass (CPB) helped overcome this barrier, by temporarily substituting for the functions of the heart and lungs. But simple evacuation of blood from the perfused, beating heart did not provide suitable conditions for most cardiac surgery: aortic valve operations required that natural perfusion of the heart be stopped; precise coronary anastomoses could not be constructed upon the beating heart; and repair of complex congenital defects required a motionless, bloodless field. A breakthrough came when innovative surgeons developed systems for slowing or stopping the heart, facilitating exploration of its previously unknown interior.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guyton RA. Methods and magic in myocardial preservation. In: Hurst JW, ed. Clinical Essays on the Heart. New York: McGraw-Hill; 1983; 1: 183–201.

    Google Scholar 

  2. Guyton RA. Cardiopulmonary bypass, cardioplegia, and central nervous system preservation: the surgeon’s perspective. In: Cardiothoracic and Vascular Anesthesia Update. Philadelphia: W B Saunders Co; 1990: 1–13.

    Google Scholar 

  3. Lolley DM, Ray JF III, Myers WO, et al. Importance of preoperative myocardial glycogen levels in human cardiac preservation. J Thorac Cardiovasc Surg 1979; 78: 678–687.

    PubMed  CAS  Google Scholar 

  4. Salerno TA, Wasan SM, Charrette EJP. Glucose substrate in myocardial protection. J Thorac Cardiovasc Surg 1980; 79: 59–62.

    PubMed  CAS  Google Scholar 

  5. Delva E, Maille JG, Solymoss BC, et al. Evaluation of myocardial damage during coronary artery grafting with serial determinations of serum CPK MB isoenzymes. J Thorac Cardiovasc Surg 1978; 75: 467–475.

    PubMed  CAS  Google Scholar 

  6. Guyton RA, McClenathan JH, Newman GE, et al. Significance of subendocardial S-T segment elevation caused by coronary stenosis in the dog. Epicardial S-T segment depression, local ischemia and subsequent necrosis. Am J Cardiol 1977; 40: 373–380.

    Article  PubMed  CAS  Google Scholar 

  7. Engleman RM, Spencer FC, Boyd AD, et al. The significance of coronary arterial stenosis during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1975; 70: 869–879.

    Google Scholar 

  8. Sink JD, Hill RC, Chitwood WR Jr, et al. Effects of phenylephrine on transmural distribution of myocardial blood flow in regions supplied by normal and collateral arteries during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1979; 78: 236–243.

    PubMed  CAS  Google Scholar 

  9. Miyamoto ATM, Robinson L, Matloff JM, et al. Perioperative infarction. Effects of cardiopulmonary bypass on collateral circulation in an acute canine model. Circulation 1978; 58 (suppl I): I147–155.

    PubMed  CAS  Google Scholar 

  10. Kleinman LH, Yarbrough JW, Symmonds JB, et al. Pressure-flow characteristics of the coronary collateral circulation during cardiopulmonary bypass. Effects of hemodilution. J Thorac Cardiovasc Surg 1978; 75: 17–27.

    PubMed  CAS  Google Scholar 

  11. Anderson HT, Kessinger JM, McFarland WJ Jr, et al. Response of the hypertrophied heart to acute anemia and coronary stenosis. Surgery 1978; 84: 8–15.

    PubMed  CAS  Google Scholar 

  12. Chitwood WR Jr, Sink JD, Hill RC, et al. The effects of hypothermia on myocardial oxygen consumption and transmural coronary blood flow in the potassium-arrested heart. Ann Surg 1979; 190: 106–116.

    Article  PubMed  Google Scholar 

  13. McConnell DH, Brazier JR, Cooper N, et al. Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. II. Ischemia during moderate hypothermia in continually perfused beating hearts. J Thorac Cardiovasc Surg 1977; 73: 95–101.

    PubMed  CAS  Google Scholar 

  14. Schaff HV, Ciardullo RC, Flaherty JT, et al. Development of regional myocardial ischemia distal to a critical coronary stenosis during cardiopulmonary bypass: comparison of the fibrillating vs. the beating nonworking states. Surgery 1978; 83: 57–66.

    PubMed  CAS  Google Scholar 

  15. Buckberg GD, Hottenrott CE. Ventricular fibrillation. Its effect on myocardial flow, distribution, and performance. Ann Thorac Surg 1975; 20: 76–85.

    Article  PubMed  CAS  Google Scholar 

  16. Brazier JR, Cooper N, McConnell DH, et al. Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. III. Effects of temperature, time, and perfusion pressure in fibrillating hearts. J Thorac Cardiovasc Surg 1977; 73: 102–109.

    PubMed  CAS  Google Scholar 

  17. Kleinman LH, Wechsler AS. Pressure-flow characteristics of the coronary collateral circulation during cardiopulmonary bypass. Effects of ventricular fibrillation. Circulation 1978; 58: 233–239.

    PubMed  CAS  Google Scholar 

  18. Schaff HV, Ciardullo RC, Flaherty JT, et al. Development of regional myocardial ischemia distal to a critical coronary stenosis during cardiopulmonary bypass: comparison of the fibrillating vs. the beating nonworking states. Surgery 1978; 83: 57–66.

    PubMed  CAS  Google Scholar 

  19. Ellis AK, Klocke FJ. Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed. Circ Res 1980; 46: 68–77.

    PubMed  CAS  Google Scholar 

  20. Lucas SK, Gardner TJ, Elmer EB, et al. Comparison of the effects of left ventricular distention during cardioplegicinduced ischemic arrest and ventricular fibrillation. Circulation 1980; 62 (suppl I): I42–49.

    PubMed  CAS  Google Scholar 

  21. Little AG, Lin CY, Wernly JA, et al. Use of the pulmonary artery for left ventricular venting during cardiac operations. J Thorac Cardiovasc Surg 1984; 87: 532–538.

    PubMed  CAS  Google Scholar 

  22. Robicsek F, Duncan GD. Retrograde air embolization in coronary operations. J Thorac Cardiovasc Surg 1987; 94: 110–114.

    PubMed  CAS  Google Scholar 

  23. Cooley DA, Reul GJ, Wukasch DC. Ischemic contracture of the heart: “stone heart. ” Am JCardiol 1972; 29: 575–577.

    Article  CAS  Google Scholar 

  24. Naylor WG, Ferrari R, Williams A. Protective effect of pretreatment with verapamil, nifedipine, and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Am J Cardiol 1980; 46: 242–248.

    Article  Google Scholar 

  25. Magee PG, Gardner TJ, Flaherty JT, et al. Improved myocardial protection with propranolol during induced ischemia. Circulation 1980; 62 (suppl I): I49–56.

    PubMed  CAS  Google Scholar 

  26. Lochner W, Arnold G, Muller-Ruchholtz ER. Metabolism of the artificially arrested heart and of the gas-perfused heart. Am J Cardiol 1966; 22: 299–311.

    Article  Google Scholar 

  27. Komai H, Yamamoto F, Tanaka K, et al. Harmful effects of inotropic agents on myocardial protection. Ann Thorac Surg 1991; 52: 927–933.

    Article  PubMed  CAS  Google Scholar 

  28. Weinstein GS, Rao PS, Tyras DH. Reduction of myocardial injury with Verapamil before aortic cross-clamping. Ann Thorac Surg 1990; 49: 419–423.

    Article  PubMed  CAS  Google Scholar 

  29. Christakis GT, Fremes SE, Weisel RD, et al. Diltiazem cardioplegia. J Thorac Cardiovasc Surg 1986; 91: 647–661.

    PubMed  CAS  Google Scholar 

  30. Krukenkamp IB, Silverman NA, Sorlie D, et al. Temperature-specific effects of adjunct Diltiazem therapy on myocardial energetics following potassium cardioplegic arrest. Ann Thorac Surg 1986; 42: 675–680.

    Article  PubMed  CAS  Google Scholar 

  31. Kates RA, Dorsey LM, Kaplan JA, et al. Pretreatment with lidoflazine, a calcium channel blocker. J Thorac Cardiovasc Surg 1983; 85: 278–286.

    PubMed  CAS  Google Scholar 

  32. Guyton RA, Dorsey LM, Colgan TK, et al. Calcium-channel blockade as an adjunct to heterogeneous delivery of cardioplegia. Ann Thorac Surg 1983; 35: 626–632.

    Article  PubMed  CAS  Google Scholar 

  33. Flameng W, Daenan W, Borgers M, et al. Cardioprotective effects of lidoflazine during 1-hour normothermic global ischemia. Circulation 1981; 64: 796–807.

    Article  PubMed  CAS  Google Scholar 

  34. Fiore AC, Naunheim KS, Taug J, et al. Myocardial preservation using Lidocaine blood cardioplegia. Ann Thorac Surg 1990; 50: 771–775.

    Article  PubMed  CAS  Google Scholar 

  35. Shumway NE, Lower RR, Stoffer RC. Selective hypothermia of the heart in anoxic cardiac arrest. Surg Gynecol Obstet1959; 109: 750–754.

    PubMed  CAS  Google Scholar 

  36. Boldt J, Kling D, Dapper F, et al. Myocardial temperature during cardiac operations: influence on right ventricular function. J Thorac Cardiovasc Surg 1990; 100: 562–568.

    PubMed  CAS  Google Scholar 

  37. Dorsey LM, Colgan TK, Silverstein JI, et al. Alterations in regional myocardial function after heterogeneous cardioplegia. J Thorac Cardiovasc Surg 1983; 86: 70–79.

    PubMed  CAS  Google Scholar 

  38. Dailey PO, Pfeffer TA, Wisniewski JB, et al. Clinical comparisons of methods of myocardial protection. J Thorac Cardiovasc Surg 1987; 93: 324–336.

    Google Scholar 

  39. Landymore RW, Tice D, Trehan N, et al. Importance of topical hypothermia to ensure uniform myocardial cooling during coronary artery bypass. J Thorac Cardiovasc Surg 1981; 82: 832–836.

    PubMed  CAS  Google Scholar 

  40. Daggett WM, Jacocks A, Coleman WS, et al. Myocardial temperature mapping. Improved intraoperative myocardial preservation. J Thorac Cardiovasc Surg 1981; 82: 883–88.

    PubMed  CAS  Google Scholar 

  41. Cameron DE, Gardner TJ. Principles of clinical hypothermia. In: Chitwoods WR, ed. State of the Art Reviews. Myocardial Preservation: Clinical Applications. Philadelphia: Hanley & Belfus Inc; 1988:xiii-xxv.

    Google Scholar 

  42. Buckberg GD, Brazier JR, Nelson RL, et al. Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating, and arrested heart. J Thorac Cardiovasc Surg 1977; 73: 87–94.

    PubMed  CAS  Google Scholar 

  43. Mankad PS, Chester AH, Yacoub MH. Role of potassium concentration in cardioplegic solutions in mediating endothelial damage. Ann Thorac Surg 1991; 51: 89–93.

    Article  PubMed  CAS  Google Scholar 

  44. Dewar M, Rosengarten MD, Samson CP, et al. Is high potassium solution necessary for reinfusions in “multidose” cold cardioplegia? A randomized prospective study using a computerized Holter system. Ann Thorac Surg 1987; 93: 409–415.

    Article  Google Scholar 

  45. Ferguson TB, Smith PK, Lofland GK, et al. The effects of cardioplegic potassium concentration and myocardial temperature on electrical activity in the heart during elective cardioplegic arrest. J Thorac Cardiovasc Surg 1986; 92: 755–765.

    PubMed  Google Scholar 

  46. Carpentier S, Murawsky M, Carpentier A. Cytotoxicity of cardioplegic solutions: evaluation of tissue cultures. Circulation 1981;64(suppl II):II90–95.

    Google Scholar 

  47. Brazier J, Hottenrott C, Buckberg G. Noncoronary collateral myocardial blood flow. Ann Thorac Surg 1975; 19: 426–435.

    Article  PubMed  CAS  Google Scholar 

  48. Rebeyka IM, Axford-Gatley RA, Bush BG, et al. Calcium paradox in an in vivo model of multidose cardioplegia and moderate hypothermia. J Thorac Cardiovasc Surg 1990; 99: 475–483.

    PubMed  CAS  Google Scholar 

  49. Kinoshita K, Oe M, Tokunaga K. Superior protective effect of low-calcium, magnesium-free potassium cardioplegic solution on ischemic myocardium. J Thorac Cardiovasc Surg 1991; 101: 695–702.

    PubMed  CAS  Google Scholar 

  50. Robinson LA, Harwood DL. Lowering the calcium concentration in St. Thomas’ Hospital cardioplegic solution improves protection during hypothermic ischemia. J Thorac Cardiovasc Surg 1991; 101: 314–325.

    PubMed  CAS  Google Scholar 

  51. Khuri SF, Marston WA, Josa M, et al. Observations on 100 patients with continuous intraoperative monitoring of intramyocardial pH. J Thorac Cardiovasc Surg 1985; 89: 170–182.

    PubMed  CAS  Google Scholar 

  52. Lochner A, Lloyd L, Brits W, et al. Oxygenation of cardioplegic solutions: a note of caution. Ann Thorac Surg 1991; 51: 777–787.

    Article  PubMed  CAS  Google Scholar 

  53. von Oppell UO, King LM, DuToit EF, et al. Effect of pH shifts induced by oxygenating crystalloid cardioplegic solutions. Ann Thorac Surg 1991; 52: 903–907.

    Article  Google Scholar 

  54. Lichtenstein SV, Abel JG, Panos A, et al. Warm heart surgery: experience with long cross-clamp times. Ann Thorac Surg 1991; 52; 1009–1013.

    Article  PubMed  CAS  Google Scholar 

  55. de Nido PJ, Wilson GJ, Mickle DAG, et al. The role of cardioplegic solution buffering in myocardial protection. J Thorac Cardiovasc Surg 1985; 89: 689–699.

    PubMed  Google Scholar 

  56. Buckberg GD. A proposed “solution” to the cardioplegic controversy. J Thorac Cardiovasc Surg 1979; 77: 809–815.

    Google Scholar 

  57. Vinten-Johansen J, Julian S, Yokoyama H, et al. Efficacy of myocardial protection with hypothermic blood cardioplegia depends on oxygen. Ann Thorac Surg 1991; 52: 939–948.

    Article  PubMed  CAS  Google Scholar 

  58. Oguma F, Imai S, Eguchi S. Role played by oxygen in myocardial protection with crystalloid cardioplegic solution. Ann Thorac Surg 1986; 42: 172–179.

    Article  PubMed  CAS  Google Scholar 

  59. Hendren WG, O’Keefe DD, Geffin GA, et al. Maximal oxygenation of dilute blood cardioplegic solution. Ann Thorac Surg 1987; 44: 48–52.

    Article  PubMed  CAS  Google Scholar 

  60. Ledingham SJM, Braimbridge MV, Hearse DJ. Improved myocardial protection by oxygenation of the St. Thomas’ Hospital cardioplegic solutions. J Thorac Cardiovasc Surg 1988; 95: 103–111.

    PubMed  CAS  Google Scholar 

  61. Guyton RA, Dorsey LMA, Craver JM, et al. Improved myocardial recovery after cardioplegic arrest with an oxygenated crystalloid solution. J Thorac Cardiovasc Surg 1985; 89: 877–887.

    PubMed  CAS  Google Scholar 

  62. Tabayashi K, McKeown PP, Miyamoto M, et al. Ischemic myocardial protection. Comparison of nonoxygenated crystalloid, oxygenated crystalloid, and oxygenated fluorocarbon cardioplegic solutions. J Thorac Cardiovasc Surg 1988; 95: 239–246.

    PubMed  CAS  Google Scholar 

  63. Steinberg JB, Doherty NE, Munfakh NA, et al. Oxygenated cardioplegia: the metabolic and functional effects of glucose and insulin. Ann Thorac Surg 1991; 51: 620–629.

    Article  PubMed  CAS  Google Scholar 

  64. Yau TM, Weisel RD, Mickel DAG, et al. Optimal delivery of blood cardioplegia. Circulation 1991;84(suppl III): III380–388.

    Google Scholar 

  65. Doherty NE III, Turocy JF, Geffin GA, et al. Benefits of glucose and oxygen in multidose cold cardioplegia. J Thorac Cardiovasc Surg 1992; 103: 219–229.

    PubMed  Google Scholar 

  66. Barner HB. Blood cardioplegia: a review and comparison with crystalloid cardioplegia. Ann Thorac Surg 1991; 52: 1354–1367.

    Article  PubMed  CAS  Google Scholar 

  67. I11es RW, Silverman NA, Krukenkamp IB, et al. The efficacy of blood cardioplegia is not due to oxygen delivery. J Thorac Cardiovasc Surg 1989; 98: 1051–1056.

    PubMed  CAS  Google Scholar 

  68. Vinten-Johansen J, Buckberg GD, Okamoto F, et al. Studies of controlled reperfusion after ischemia. V. Superiority of surgical versus medical reperfusion after regional ischemia. J Thorac Cardiovasc Surg 1986; 92: 525–534.

    PubMed  CAS  Google Scholar 

  69. Allen BS, Okamoto F, Buckberg GD, et al. Studies of controlled reperfusion after ischemia. XV. Immediate functional recovery after six hours of regional ischemia by careful control of conditions of reperfusion and composition of reperfusate. J Thorac Cardiovasc Surg 1986; 92: 621–635.

    PubMed  CAS  Google Scholar 

  70. Cheung EH, Arcidi JM Jr, Dorsey LMA, et al. Reperfusion of infarcting myocardium: benefit of surgical reperfusion in a chronic model. Ann Thorac Surg 1989; 48: 331–338.

    Article  PubMed  CAS  Google Scholar 

  71. Bottner RK, Wallace RB, Visner MS, et al. Reduction of myocardial infarction after emergency coronary artery bypass grafting for failed coronary angioplasty with use of a normothermic reperfusion cardioplegia protocol. J Thorac Cardiovasc Surg 1991; 101: 1069–1075.

    PubMed  CAS  Google Scholar 

  72. Julia PL, Buckberg GD, Acar C, et al. Studies of controlled reperfusion after ischemia. XXI. Reperfusate composition: superiority of blood cardioplegia over crystalloid cardioplegia in limiting reperfusion damage. Importance of endogenous oxygen free radical scavengers in red blood cells. J Thorac Cardiovasc Surg 1991; 303–313.

    Google Scholar 

  73. Quillen J, Kofsky ER, Buckberg GD, et al. Studies of controlled reperfusion after ischemia. XXIII. Deleterious effects of simulated thrombolysis preceding simulated coronary artery bypass grafting with controlled blood cardioplegic reperfusion. J Thorac Cardiovasc Surg 1991; 101: 455–464.

    PubMed  CAS  Google Scholar 

  74. Schaff HV, Goldman RA, Bulkley BH, et al. Hyperosmolar reperfusion following ischemic cardiac arrest. Surgery 1981; 89: 141–150.

    PubMed  CAS  Google Scholar 

  75. Lazar HL, Buckberg GD, Manganaro AM, et al. Myocardial energy replenishment and reversal of ischemic damage by substrate enhancement of secondary blood cardioplegia with amino acids during reperfusion. J Thorac Cardiovasc Surg 1980; 80: 350–359.

    PubMed  CAS  Google Scholar 

  76. Mills SA, Hansen K, Vinten-Johansen J, et al. Enhanced functional recovery with venting during cardioplegic arrest in chronically damaged hearts. Ann Thorac Surg 1985; 40: 566–573.

    Article  PubMed  CAS  Google Scholar 

  77. Lucas SK, Schaff HV, Flaherty JT, et al. The harmful effects of ventricular distention during postischemic reperfusion. Ann Thorac Surg 1981; 32: 486–494.

    Article  PubMed  CAS  Google Scholar 

  78. Bolling SF, Bies LE, Bove EL, et al. Augmenting intracellular adenosine improves myocardial recovery. J Thorac Cardiovasc Surg 1990; 99: 469–474.

    PubMed  CAS  Google Scholar 

  79. Haas GS, DeBoer LWV, O’Keefe DD, et al. Reduction of postischemic myocardial dysfunction by substrate repletion during reperfusion. Circulation 1984; 70 (suppl I): I65–74.

    PubMed  CAS  Google Scholar 

  80. Svedjeholm R, Ekroth R, Joachimsson PO, et al. Myocardial uptake of amino acids and other substrates in relation to myocardial oxygen consumption four hours after cardiac operations. J Thorac Cardiovasc Surg 1991; 101: 688–694.

    PubMed  CAS  Google Scholar 

  81. Rosenkranz ER, Okamoto F, Buckberg GD, et al. Safety of prolonged aortic clamping with blood cardioplegia. II. Glutamate enrichment in energy-depleted hearts. J Thorac Cardiovasc Surg 1984; 88: 402–410.

    PubMed  CAS  Google Scholar 

  82. Engelman RM, Rousou JA, Flack JE III, et al. Reduction of infarct size by systemic amino acid supplementation during reperfusion. J Thorac Cardiovasc Surg 1991; 101: 855–859.

    PubMed  CAS  Google Scholar 

  83. Rosenkranz ER, Okamoto F, Buckberg GD, et al. Safety of prolonged aortic clamping with blood cardioplegia. III. Aspartate enrichment of glutamate-blood cardioplegia in energy-depleted hearts after ischemic and reperfusion injury. J Thorac Cardiovasc Surg 1986; 91: 428–435.

    PubMed  CAS  Google Scholar 

  84. Ferreira R, Burgos M, Milei J, et al. Effect of supplementing cardioplegic solution with deferoxamine on reperfused human myocardium. J Thorac Cardiovasc Surg 1990; 100: 708–714.

    PubMed  CAS  Google Scholar 

  85. Chambers DJ, Braimbridge, MV, Hearse DJ. Free radicals and cardioplegia: Allopurinol and Oxypurinol reduce myocardial injury following ischemic arrest. Ann Thorac Surg 1987; 44: 291–297.

    Article  PubMed  CAS  Google Scholar 

  86. Shlafer M, Kane PF, Kirsh MM. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg 1982; 83: 830–839.

    PubMed  CAS  Google Scholar 

  87. Magovern GJ, Bolling SF, Casale AS, et al. The mechanism of mannitol in reducing ischemic injury: hyperosmolarity or hydroxyl scavenger? Circulation 1984; 70 (suppl I): I91–95.

    PubMed  Google Scholar 

  88. Guyton RA, Arcidi JM Jr, Langford DA, et al. Emergency coronary bypass for cardiogenic shock. Circulation 1987; 76 (suppl V): V22–27.

    PubMed  CAS  Google Scholar 

  89. Akins CW. Noncardioplegic myocardial preservation for coronary revascularization. J Thorac Cardiovasc Surg 1984; 88: 174–181.

    PubMed  CAS  Google Scholar 

  90. Akins CW, Carroll DL. Event-free survival following non-emergency myocardial revascularization during hypothermic fibrillatory arrest. Ann Thorac Surg 1987; 43: 628–633.

    Article  PubMed  CAS  Google Scholar 

  91. Bonchek LI, Burlingame MW, Vazales BE, et al. Applicability of noncardioplegic coronary bypass to high-risk patients. Selection of patients, technique, and clinical experience in 3000 patients. J Thorac Cardiovasc Surg 1992; 103: 230–237.

    PubMed  CAS  Google Scholar 

  92. Coetzee A, Boussouw G, Fourie P, et al. Preservation of myocardial function and biochemistry after blood and oxygenated crystalloid cardioplegia during cardiac arrest. Ann Thorac Surg 1990; 50: 230–237.

    Article  PubMed  CAS  Google Scholar 

  93. Guyton RA, Dorsey LM, Craver JM, et al. Improved myocardial recovery after cardioplegic arrest with an oxygenated crystalloid solution. J Thorac Cardiovasc Surg 1985; 89: 877–887.

    PubMed  CAS  Google Scholar 

  94. Robinson LA, Braimbridge MV, Hearse DJ. Comparison of the protective properties of four clinical crystalloid cardioplegic solutions in the rat heart. Ann Thorac Surg 1984; 38: 268–274.

    Article  PubMed  CAS  Google Scholar 

  95. Aldea GS, Austin RE Jr, Flynn AE, et al. Heterogeneous delivery of cardioplegic solution in the absence of coronary artery disease. J Thorac Cardiovasc Surg 1990; 99: 345–353.

    PubMed  CAS  Google Scholar 

  96. Johnson RE, Dorsey LM, Moye SJ, et al. Cardioplegia infusion: the safe limits of pressure and temperature. J Thorac Cardiovasc Surg 1982; 83: 813–823.

    PubMed  CAS  Google Scholar 

  97. Menasche P, Subayi JB, Piwnica A. Retrograde coronary sinus cardioplegia for aortic valve operations: a clinical report on 500 patients. Ann Thorac Surg 1990; 49: 556–564.

    Article  PubMed  CAS  Google Scholar 

  98. Menasche P, Subayi JB, Veyssie L, et al. Efficacy of coronary sinus cardioplegia in patients with complete coronary artery occlusions. Ann Thorac Surg 1991; 51: 418–423.

    Article  PubMed  CAS  Google Scholar 

  99. Bolling SF, Flaherty JT, Bulkley BH, et al. Improved myocardial preservation during global ischemia by continuous retrograde coronary sinus perfusion. J Thorac Cardiovasc Surg 1983; 86: 659–666.

    PubMed  CAS  Google Scholar 

  100. Gundry SR, Kirsh MM. A comparison of retrograde cardioplegia versus antegrade cardioplegia in the presence of coronary artery obstruction. Ann Thorac Surg 1984; 38: 124–127.

    Article  PubMed  CAS  Google Scholar 

  101. Rosenkranz ER, Vinten-Johanen J, Buckberg GD, et al. Benefits of normothermic induction of blood cardioplegia in energy-depleted hearts with maintenance of arrest by multidose cold blood cardioplegic infusions. J Thorac Cardiovasc Surg 1982; 84: 667–677.

    PubMed  CAS  Google Scholar 

  102. Magovern GJ Jr, Flaherty JT, Gott VL, et al. Failure of blood cardioplegia to protect myocardium at lower temperatures. Circulation 1982; 66 (suppl I): I60–67.

    PubMed  Google Scholar 

  103. Salerno TA, Houck JP, Barrozo CAM, et al. Retrograde continuous warm blood cardioplegia: a new concept in myocardial protection. Ann Thorac Surg 1991; 51: 245–247.

    Article  PubMed  CAS  Google Scholar 

  104. Lichtenstein SV, Abel JG, Salerno TA. Warm heart surgery and results of operation for recent myocardial infarction. Ann Thorac Surg 1991; 52: 455–460.

    Article  PubMed  CAS  Google Scholar 

  105. Lichtenstein SV, Abel JG. Warm heart surgery: theory and current practice. In: Karp RB, Laks H, Wechsler AS, eds. Advances in Cardiac Surgery. St. Louis: Mosby Year Book; 1992: 135–154.

    Google Scholar 

  106. Teoh KHT, Panos AL, Harmantas AA, et al. Optimal visualization of coronary artery anastomoses by gas jet. Ann Thorac Surg 1991; 52: 564.

    Article  PubMed  CAS  Google Scholar 

  107. Weisel RD, Hoy FBY, Baird RJ, et al. Comparison of alternative cardioplegic techniques. J Thorac Cardiovasc Surg 1983; 86: 97–107.

    PubMed  CAS  Google Scholar 

  108. Konishi T, Apstein CS. Comparison of three cardioplegic solutions during hypothermic ischemic arrest in neonatal blood-perfused rabbit hearts. J Thorac Cardiovasc Surg 1989; 98: 1132–1137.

    PubMed  CAS  Google Scholar 

  109. Yano Y, Braimbridge MV, Hearse DJ. Protection of the pediatric myocardium. Differential susceptibility to ischemic injury of the neonatal rat heart. J Thorac Cardiovasc Surg 1987; 94: 887–896.

    PubMed  CAS  Google Scholar 

  110. Bove EL, Stammers AH. Recovery of left ventricular function after hypothermic global ischemia. Age-related differences in the isolated working rabbit heart. J Thorac Cardiovasc Surg 1986; 91: 115–122.

    PubMed  CAS  Google Scholar 

  111. Fujiwara T, Heinle J, Britton L, et al. Myocardial preservation in neonatal lambs. J Thorac Cardiovasc Surg 1991; 101: 703–712.

    PubMed  CAS  Google Scholar 

  112. Baker JE, Boerboom LE, Olinger GN. Cardioplegiainduced damage to ischemic immature myocardium is independent of oxygen availability. Ann Thorac Surg 1990; 50: 934–939.

    Article  PubMed  CAS  Google Scholar 

  113. Kempsford RD, Hearse DJ. Protection of the immature heart. J Thorac Cardiovasc Surg 1990; 99: 269–279.

    PubMed  CAS  Google Scholar 

  114. Baker JE, Boerboom LE, Olinger GN. Is protection of ischemic neonatal myocardium by cardioplegia species dependent? J Thorac Cardiovasc Surg 1990; 99: 280–287.

    PubMed  CAS  Google Scholar 

  115. Baker EJ IV, Olinger GN, Baker JE. Calcium content of St. Thomas’ II cardioplegic solution damages ischemic immature myocardium. Ann Thorac Surg 1991; 52: 993–999.

    Article  PubMed  Google Scholar 

  116. Williams WG, Rebeyka IM, Tibshirani RJ, et al. Warm induction blood cardioplegia in the infant. J Thorac Cardiovasc Surg 1990; 100: 869–901.

    Google Scholar 

  117. Foreman J, Pegg DE, Armitage WJ. Solutions for preservation of the heart at 0°C. J Thorac Cardiovasc Surg 1985; 89: 867–871.

    PubMed  CAS  Google Scholar 

  118. Gott JP, Pan-Chih, Dorsey LMA, et al. Cardioplegia for transplantation: failure of extracellular solution compared with Stanford or UW solution. Ann Thorac Surg 1990; 50: 348–354.

    Article  PubMed  CAS  Google Scholar 

  119. Yeh T Jr, Hanan SA, Johnson DE, et al. Superior myocardial preservation with modified UW solution after prolonged ischemia in the rat heart. Ann Thorac Surg 1990; 49: 932–939.

    Article  PubMed  Google Scholar 

  120. Stein DG, Drinkwater DC, Laks H, et al. Cardiac preservation in patients undergoing transplantation. A clinical trial comparing University of Wisconsin solution and Stanford solution. J Thorac Cardiovasc Surg 1991; 102: 657–665.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Guyton, R.A. (1995). The Myocardium: Physiology and Protection During Cardiac Surgery and Cardiopulmonary Bypass. In: Mora, C.T., Guyton, R.A., Finlayson, D.C., Rigatti, R.L. (eds) Cardiopulmonary Bypass. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2484-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2484-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7557-2

  • Online ISBN: 978-1-4612-2484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics