Advertisement

Cardiopulmonary Bypass: The Historical Foundation, the Future Promise

  • Pierre M. Galletti
  • Christina T. Mora

Abstract

Cardiopulmonary bypass (CPB) is used so routinely in hospitals around the world that most of the participants — surgeons, anesthesiologists, perfusionists, operating room nurses and, above all, patients — forget that this landmark in clinical technology is not even 40 years old. In fact, many of the pioneers are still active in the field. Yet, so much has been done to transform a once-hazardous procedure into standard medical practice — through basic science, quality control, and good manufacturing — that one hardly remembers the days (not so long ago) when “pump-oxygenators,” as they were graphically called, were assembled just outside the operating room by tinkerers with a dream. The purpose of this chapter is to recall the inventiveness displayed by a small coterie of gifted investigators to whom we owe the mechanical and physiologic foundations of open-heart surgery, and to reflect on the new demands that continuing clinical advances will undoubtedly make on this technology.

Keywords

Cardiopulmonary Bypass Hollow Fiber Extracorporeal Circulation Roller Pump Deep Hypothermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LeGallois JJC; Nancrede NC, Nancrede JC, trans. Experiments on the Principle of Life. Philadelphia: M Thomas; 1813.Google Scholar
  2. 2.
    Brown-Sequard E. Recherches experimentales sur les propriétés physiologiques et les usage du sang rouge et du sang noir et leurs principaux éléments gazeus, l’oxygène et l’acide carbonique. J Physiol de l’Homme (Paris) 1858;1:95–122, 353–367,729–735.Google Scholar
  3. 3.
    Ludwig C, Schmidt A. Das Verhalten der Gase, welche mit dem Blut durch den reizbaren Saugethiermuskel strömen. Leipzig Berichte 1868; 20: 12–72.Google Scholar
  4. 4.
    Starling EH. The Linacre lecture on the law of the heart. London: Longman Green Publishers; 1915.Google Scholar
  5. 5.
    Brukhonenko S. Circulation artificielle du sang dans l’organisme entier d’un chien avec coeur exclu. J Physiol Path Gen 1929; 27: 257–272.Google Scholar
  6. 6.
    von Frey M, Gruber M. Untersuchungen über den Stoffwechsel isolierter Organe. Ein Respirations-Apparat für isolierte Organe. Virchow’s Arch Physiol 1885; 9: 519–532.Google Scholar
  7. 7.
    McLean J. The thromoboplastic action of cephalin Am J Physiol 1916; 41: 250–257.Google Scholar
  8. 8.
    Chargraff E, Olson KB. Studies on the chemistry of blood coagulation. VI. Studies on the action of heparin and other anticoagulants. The influence of protamine on the anticoagulant effect in vivo. J Biol Chem 1937; 122: 153–167.Google Scholar
  9. 9.
    DeBakey ME. A simple continuous flow blood transfusion instrument. New Orleans Med Surg J 1934; 87: 386–389.Google Scholar
  10. 10.
    Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia: its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperature. Ann Surg 1950; 132: 849–866.PubMedCrossRefGoogle Scholar
  11. 11.
    Boerema I, Wildschut A, Broekhuysen L, et al. Experimental researches into hypothermia as an aid in the surgery of the heart. Arch ChirNeerl 1951; 3: 25–34.PubMedGoogle Scholar
  12. 12.
    Lewis FJ, Benvenuto R, Demetrakopoulos N. A new pump oxygenator employing polyethylene membranes. Q Bull Northwest Univ Med School 1958; 32: 262–267.Google Scholar
  13. 13.
    Swan HJC. Factors in the control of the circulation which may be modified during total body perfusion. IXE Trans Med Electronics 1959; 6: 32–33.CrossRefGoogle Scholar
  14. 14.
    Gibbons JH Jr. Artificial maintenance of circulation during experimental occlusion of pulmonary artery. Arch Surg 1937; 34: 1105–1131.Google Scholar
  15. 15.
    Gibbon JH Jr, Dobell AR, Voigt GB, et al. The closure of interventricular septal defects on dogs during open cardiotomy with the maintenance of the cardio-respiratory functions by a pump oxygenator. J Thorac Surg 1954; 28: 235240.Google Scholar
  16. 16.
    Kirklin JW, Theye RA, Patrick RT. The stationary vertical screen oxygenator. In: Allen JG, ed. Extracorporeal Circulation. Springfield, Ill: Charles C Thomas Publisher; 1958: 57–66.Google Scholar
  17. 17.
    Kirklin JW, Dushane JW, Wood EH, et al. Intracardiac surgery with the aid of a mechanical pump-oxygenator system (Gibbon-type). Report of eight cases. Proc Mayo Clin 1955; 30: 201–206.Google Scholar
  18. 18.
    Dennis C. Certain methods for artificial support of the circulation during intracardiac surgery. Surg Clin North Am 1956; 36: 423–436.Google Scholar
  19. 19.
    Cross ES, Berne RM, Hirose Y, et al. Evaluation of a rotating disc type reservoir-oxygenator. Proc Soc Exp Biol Med 1956; 93: 210–215.PubMedGoogle Scholar
  20. 20.
    Crafoord C. Operationen am offenen Herzen mit HerzLungen-Maschine (Stockholmer Modell). Langenbeck Arch Klin Chir 1958; 289: 257–266.PubMedCrossRefGoogle Scholar
  21. 21.
    Clark LC Jr. Blood gas exchange devices. IRE Trans Med Electronics 1959; 6: 18–21.CrossRefGoogle Scholar
  22. 22.
    Thomas JA. Physiologie du coeur-poumon à membrane pulmonaire artificielle. CR Acad Sci Paris 1959; 248: 291–294.Google Scholar
  23. 23.
    Clark LC Jr, Gollan F, Gupta VB. The oxygenation of blood by gas dispersion. Science 1950; 111: 85–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Salisbury PF. Blood pump gas exchange system (“artificial heart-lung machine”) of large flow capacity. J Appl Physiol 1956; 9: 487–491.PubMedGoogle Scholar
  25. 25.
    Gott VL, DeWall RA, Lillehei CW, et al. A self-contained disposable oxygenator of plastic sheet for intracardiac surgery. Thorax 1957; 12: 1–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Rygg IH, Kyvsgaard E. A disposable polyethylene oxygenator system applied in a heart-lung machine. Acta Chir Scand 1956; 112: 433–437.Google Scholar
  27. 27.
    Rygg IH, Kyvsgaard E. Further development of the heart-lung machine with Rygg-Kyvsgaard plastic bag oxygenator. Minerva Chir 1958; 13: 1402–1404.PubMedGoogle Scholar
  28. 28.
    Lillehei CW. Controlled cross circulation for direct-vision intracardiac surgery; correction of ventricular septal defects, atrioventricularis communis and tetralogy of Fallot. Post Grad Med 1955; 17: 388–396.Google Scholar
  29. 29.
    Forssmann W. Über Kontrastdarstellung der Hohlen des lebenden rechten Herzens and der Lungenschlagader. Mün Med Wochenschr 1932; 78: 789–792.Google Scholar
  30. 30.
    Swan HJC, Paton B. The combined use of hypothermia and extracorporeal circulation in cardiac surgery. J Cardiovasc Surg 1960; 1: 169–175.Google Scholar
  31. 31.
    Senning A. Extracorporeal circulation combined with hypothermia. Acta Chir Scand 1954; 107: 516–524.PubMedGoogle Scholar
  32. 32.
    Sealy WC, Brown IW Jr, Merrit D, et al. Hypothermia, low flow extracorporeal circulation and controlled cardiac arrest for open heart surgery. Surg Gynecol Obstet 1957; 104: 44 1451.Google Scholar
  33. 33.
    Gollan F. Physiology of deep hypothermia by total body perfusion. Ann NY Acad Sci 1959; 80: 301–314.PubMedCrossRefGoogle Scholar
  34. 34.
    Dubost C, Blondeau P. The association of the artificial heart-lung with deep hypothermia in open heart surgery. J Cardiovasc Surg 1960; 1: 85–93.Google Scholar
  35. 35.
    Wesolowski SA, Fisher JH, Welch CS. Recovery of the dog’s heart after varying periods of acute ischemia. Surg Forum 1953; 3: 270–277.Google Scholar
  36. 36.
    Melrose DG, Dreyer B, Baker JBE. Elective cardiac arrest: preliminary communication. Lancet 1955; 2: 21–22.CrossRefGoogle Scholar
  37. 37.
    Effler DB, Sones FM, Kolff WJ, et al. Elective cardiac arrest in open-heart surgery. Report of three cases. Cleveland Clin Quart 1956; 23: 105–114.PubMedGoogle Scholar
  38. 38.
    Shumway NE. A classification of elective cardiac arrest for open heart surgery. Dis Chest 1959; 36: 315–318.PubMedGoogle Scholar
  39. 39.
    Bjork VO, Fors B. Induced cardiac arrest. J Thorac Cardiovasc Surg 1961; 41: 387–394.Google Scholar
  40. 40.
    Kouwenhoven WB, Hooker DR, Lotz EL. Electric shock effects of frequency. Electrical Eng 1936; 384–386.Google Scholar
  41. 41.
    Wiggers CJ. Physiology in Health and Disease. Philadelphia: Lea and Febiger; 1949.Google Scholar
  42. 42.
    Beck CS, Pritchard WH, Fell HS. Ventricular fibrillation of long duration abolished by electric shock. JAMA 1947; 135: 985–986.Google Scholar
  43. 43.
    Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia: its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperature. Ann Surg 1950; 132: 849–866.PubMedCrossRefGoogle Scholar
  44. 44.
    Paneth M, Weirich W, Lillehei WC, et al. Physiologic studies upon prolonged cardiopulmonary bypass with the pump oxygenator with particular reference to (1) acid-base balance, (2) syphon cavai drainage. J Thorac Surg 1957; 34: 570–579.PubMedGoogle Scholar
  45. 45.
    Lillehei CW, Gott VL, Hodges PC, et al. Transistor pacemaker for treatment of complete atrioventricular dissociation. JAMA 1960; 172: 2006–2010.Google Scholar
  46. 46.
    Zuhdi N, McCollough B, Greer A, et al. The use of citrated banked blood for open-heart surgery. Anesthesiology 1960; 21: 496–501.PubMedCrossRefGoogle Scholar
  47. 47.
    Kolff WJ, Berk HTJ. Artificial kidney: dialyzer with great area. Acta Med Scand 1944; 117: 121–134.CrossRefGoogle Scholar
  48. 48.
    Jacobj C. Ein Beitrag zur Technik der kunstlichen Durchblutung überlebender Organe. Arch Exp Path (Leipzig) 1895; 31: 330–348.CrossRefGoogle Scholar
  49. 49.
    Brukhonenko S. Appareil pour la circulation artificielle du sang des animaux à sang chaud. J Physiol Path Gen 1929; 27: 12–18.Google Scholar
  50. 50.
    Fleisch A. Ein automatisch regulierender Durchblutungsap-parat mit fortlâufender Registrierung der Durchbkutungsgeschwindigkeit. In: Abderhalden E, ed. Handbuch der biologischen Arbeitsmethoden. 1935; Section V Part 8, Number 3, pp. 1007–1026.Google Scholar
  51. 51.
    Karlson KE. The Problem of Construction of a Pump Oxygenator to Replace the Heart and Lungs for Brief Periods. Minneapolis: University of Minnesota, 1952. Thesis.Google Scholar
  52. 52.
    Kolff WJ, Balzer R. The artificial coil lung. Trans Am Soc Artif Int Organs 1955; 1: 39–42.Google Scholar
  53. 53.
    Clowes GHA Jr, Hopkins AL, Neville WE. An artificial lung dependent upon diffusion of oxygen and carbon dioxide through plastic membranes. J Thorac Surg 1956; 32: 630–637.PubMedGoogle Scholar
  54. 54.
    Clowes GHA Jr, Neville WE. Further development of a blood oxygenator dependent upon the diffusion of gases through plastic membranes. Trans Am Soc Artif Int Organs 1957; 3: 52–58.Google Scholar
  55. 55.
    Melrose DG, Bramson ML, Gerbode F, et al. The membrane oxygenator. Some aspects of oxygen and carbon dioxide transport across polyethylene film. Lancet 1958; 1: 1050–1051.PubMedCrossRefGoogle Scholar
  56. 56.
    Pierce EC II. Diffusion of oxygen and carbon dioxide through teflon membranes. Arch Surg 1958; 77: 938–943.Google Scholar
  57. 57.
    Galletti PM, Snider M, Silbert-Aiden D. Gas permeability of plastic membranes for artificial lungs. Med Res Eng 1966; 5 (2): 20–23.PubMedGoogle Scholar
  58. 58.
    Kolobow T, Bowman R. Construction and evaluation of an alveolar membrane artificial heart-lung. Trans Am Soc Artif Int Organs 1963; 9: 238–243.Google Scholar
  59. 59.
    Bramson ML, Osborn JJ, Main FB, et al. A new disposable membrane oxygenator with integral heat exchange. J Thorac Cardiovasc Surg 1965; 50: 391–400.PubMedGoogle Scholar
  60. 60.
    Butruille Y, Chevallet J, Granger A, et al. Rhone-Poulenc oxygenator and associated pumping system. In: Zapol WM, Qvist J, eds. Artificial Lungs for Acute Respiratory Failure. New York: Academic Press-Hemisphere Publishing Corp; 1976: 223–233.Google Scholar
  61. 61.
    Galletti PM, Hopf MA, Pierce EC II. A membrane lung-kidney. Trans Am Soc Artif Int Organs 1962; 8: 47–52.Google Scholar
  62. 62.
    Landé AJ, Parker B, Subramanian V, et al. Methods for increasing the efficiency of a new dialyzer-membrane oxygenator. Trans Am Soc Artif Int Organs 1968; 14: 227–230.Google Scholar
  63. 63.
    Pierce EC II, Mathewson WF Jr. Design and fabrication of blood oxygenator for circulatory assist devices. Proc Artif Heart Prog Conf. Washington, DC: US Dept of Health, Education, and Welfare; 1969: 405.Google Scholar
  64. 64.
    Kolobow T, Zapol W, Pierce JE, et al. Partial extracorporeal gas exchange in alert newborn lambs with a membrane artificial lung via an a-v shunt for periods up to 96 hours. Trans Am Soc Artif Int Organs 1968; 14: 328–334.Google Scholar
  65. 65.
    Trudell LA, Friedman LI, Kakvan M, et al. Evaluation of a disposable membrane oxygenator. Trans Am Soc Artif Int Organs 1972; 18: 538–545.Google Scholar
  66. 66.
    Richardson PD, Galletti PM. Correlation of effects of blood flow rate, viscosity and design features on artificial lung performance In: Dawids SG, Engell HC, eds. Physiological and Clinical Aspects of Oxygenator Design, 29. Luxembourg: Elsevier/North-Holland Biomedical Press; 1976.Google Scholar
  67. 67.
    Brinsfield DE, Hope MA, Geering RB, et al. Hematological changes in long term perfusion. J Appl Physiol 1962; 17: 531–534.PubMedGoogle Scholar
  68. 68.
    Friedman LI, Richardson PD, Galletti PM. Blood Oxygenator Testing and Evaluation. Part II. Procedures and Results. Bethesda, MD: Medical Devices Application Program, National Heart and Lung Institute; 1973. Report NIH–69–2047–2.Google Scholar
  69. 69.
    McCaughan JS Jr, Weeder R, Blakemore WS, et al. Evaluation of new non-wettable macroporous membranes with high permeability coefficients for possible use in a membrane oxygenator. J Thorac Cardiovasc Surg 1960; 40: 574–581.Google Scholar
  70. 70.
    Dantowitz P, Borsanyi AS, Deibert MD, et al. A blood oxygenator with preformed membrane-lined capillary channels. Trans Am Soc Artif Int Organs 1969; 15: 138–143.Google Scholar
  71. 71.
    Snider MT, Richardson PD, Friedman LI, et al. Studies of carbon dioxide transfer rate in artificial lungs. J Appl Physiol1974; 36: 233–239.PubMedGoogle Scholar
  72. 72.
    Karlson KE, Murphy WRC, Kakvan M, et al. Total cardiopulmonary bypass with a new microporous Teflon membrane oxygenator. Surgery 1974; 76: 935–945.PubMedGoogle Scholar
  73. 73.
    Tanishita K, Nakano K, Richardson PD, et al. Augmentation of gas transfer with pulsatile flow in the coiled tube membrane oxygenator design. Trans Am Soc Artif Int Organs 1980; 26: 561–566.Google Scholar
  74. 74.
    Chenoweth DE, Cooper SW, Hugh TE, et al. Complement activation during CPB: evidence of generation of C3a and C5a anaphylatoxins. N Engl J Med 1981; 304: 497–506.PubMedCrossRefGoogle Scholar
  75. 75.
    Kirklin JK, Westaby SW, Blackstone EH, et al. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1983; 86: 845–857.PubMedGoogle Scholar
  76. 76.
    Westaby SW. Organ dysfunction of cardiopulmonary bypass. A systemic inflammation reaction initiated by the extracorporeal circuit. Intensive Care Med 1987; 13: 89–95.PubMedCrossRefGoogle Scholar
  77. 77.
    van Oeveren W, Wildevuur CRH, Kazatchkine MD. Biocompatibility of extracorporeal circuits in heart surgery. Trans Sci 1990; 11: 5–33.CrossRefGoogle Scholar
  78. 78.
    Wachfogel YT, Kurick U, Greenplate J, et al. Human neutrophil degranulation during extracorporeal circulation. Blood 1987; 69: 324–330.Google Scholar
  79. 79.
    Gallin JR. Neutrophil specific granules: a fuse that ignites the inflammatory response. Clin Res 1984; 32: 320–328.PubMedGoogle Scholar
  80. 80.
    Antonsen S, Brandslund J, Clemensen S, et al. Neutrophil lysosomal enzyme release and complement activated during cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg 1987; 21: 47–52.PubMedGoogle Scholar
  81. 81.
    Burrows FA, Steele RW, Marmer DJ, et al. Influence of operations with cardiopulmonary bypass on polymorphonuclear leukocyte function in infants. J Thorac Cardiovasc Surg 1987; 93: 253–260.PubMedGoogle Scholar
  82. 82.
    Lundstrom M, Olsson P, Unger P, et al. Effect of extracorporeal circulation on hematopoiesis and phagocytosis. J Cardiovasc Surg 1963; 4: 664–668.Google Scholar
  83. 83.
    Mayer JE Jr, McCullough J, Weiblen BJ, et al. Effects of cardiopulmonary bypass on neutrophil chemotaxis. Surg Forum 1976; 27: 285–287.PubMedGoogle Scholar
  84. 84.
    Haeffner-Cavaillon N, Roussellier N, Ponzio O, et al. Induction of interleukin-1 production in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 1988; 22: 51–53.Google Scholar
  85. 85.
    Rocatello D, Formica M, Cavalli G, et al. Changes in neutrophil oxidative potential in patients undergoing cardiopulmonary bypass with polypropylene hollow fiber oxygenators. Artif Organs 1990; 14: 69–72.CrossRefGoogle Scholar
  86. 86.
    Plötz FB, van Oeveren W, Hultquist KA, et al. A heparin-coated circuit reduces complement activation and the release of leucocyte inflammatory mediators during extracorporeal circulation in a rabbit. Artif Organs 1992; 16: 366–370.PubMedCrossRefGoogle Scholar
  87. 87.
    Bagley B, Bagley A, Henrie J, et al. Quantitative gas transfer into and out of circulating venous blood by means of an intravenacaval oxygenator. Trans Am Soc Artif Int Organs 1991; 37: M413–415.Google Scholar
  88. 88.
    Gille JP. Personal communication, 1985.Google Scholar
  89. 89.
    Tamari Y, Tortolani AJ, Maquine M, et al. The effects of high pressure on microporous membrane oxygenator failure. Artif Organs 1991; 15: 15–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Nilsson L, Storm KE, Thelin S, et al. Heparin coated equipment reduces complement activation during cardiopulmonary bypass in the pig. Artif Organs 1990; 14: 46–48.PubMedCrossRefGoogle Scholar
  91. 91.
    Videm V, Nilsson L, Venge P, et al. Reduced granulocyte activation with a heparin-coated device in an in vitro model of cardiopulmonary bypass. Artif Organs 1991; 15: 90–95.PubMedCrossRefGoogle Scholar
  92. 92.
    Plötz FB, van Oeveren W, Hultquist KA, et al. A heparin-coated circuit reduces complement activation and the release of leucocyte inflammatory mediators during extracorporeal circulation in a rabbit. Artif Organs 1992; 16: 366–370.PubMedCrossRefGoogle Scholar
  93. 93.
    von Saegesser LK, Weiss B, Garcia E, et al. Reduction and elimination of systemic heparinization during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1992; 103: 790–799.Google Scholar
  94. 94.
    Gerbode F, Osborn JJ, Bramson ML. Experiments in the development of a membrane heart-lung machine. Am J Surg 1967; 114: 16–23.PubMedCrossRefGoogle Scholar
  95. 95.
    Starr A, Edwards ML. Mitral replacement. A clinical experience with the ball valve prosthesis. Ann Surg 1961; 154: 726746.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • Pierre M. Galletti
  • Christina T. Mora

There are no affiliations available

Personalised recommendations