Basic Physics of High-Frequency Ultrasound Imaging

  • Charles J. Pavlin
  • FS Foster


The sensation of hearing represents a fundamental connection between ourselves and the world around us. As Lord Rayleigh stated in the introduction of his famous treatise, The Theory of Sound [1], “the sensation of sound is a thing sui generis, not comparable with any other of our senses.” At the basic level sound and hearing, however, represent only a small window on the broad science of vibration. Our ability to appreciate and understand vibration is in turn tied to the physical and mathematical concepts of mechanics. In a sound wave, periodic variations in pressure cause the individual molecules of the medium in which the wave is propagating to oscillate about their equilibrium positions. The energy of the wave is transferred to neighboring molecules by means of the elastic properties of the medium, resulting in a wave that propagates at a characteristic speed called the speed of sound. In ideal liquids, gases, and to a large extent in tissues, these waves are compressional in nature; that is, the displacement of the molecules is along the longitudinal axis of propagation. Unlike other forms of propagating wave energy such as light and heat, sound is unique in that it requires a medium in which to propagate.


Attenuation Coefficient Surface Acoustic Wave Lateral Resolution Ciliary Body Ocular Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rayleigh JWS. The Theory of Sound, 2nd Ed., 1984. Macmillan Co., London.Google Scholar
  2. 2.
    Langevin P, Chilowski MC. Procédés et appareils pour la production de signaux sous-marins direges et pour la localisation a distance d’obstacles sousmarins. French Patent 1916, No. 502913.Google Scholar
  3. 3.
    Forster FK, Olerud JE, Pomajevich GR, Holmes AW, Sharar SR. High frequency ultrasonic imaging and backscatter attenuation techniques for determination of thermal injury to the skin. IEEE Ultrasonics Symposium Proceedings 1986; IEEE Cat. No. 86CH2791-2, pp. 845-848. IEEE, New York.Google Scholar
  4. 4.
    Yano T, Fukukita H, Uneo S, Fukomoto A. 40 MHz ultrasound diagnostic system for: Dermatologie examination, IEEE Ultrasonics Symposium Proceedings 1987; IEEE Cat. No. 87CH2791-2, pp. 875–878. IEEE, New York.Google Scholar
  5. 5.
    Altmeyer P, el Gammal S, Hoffman K, Eds. Ultrasound in Dermatology, 1992. Springer-Verlag, Berlin.Google Scholar
  6. 6.
    Wiersema MJ, Reilly CR, Sanghvi NT, Hawes R, Wiersema L, Aust C. Twenty-five MHz gastrointestinal ultrasonography. IEEE Ultrasonics Symposium Proceedings 1989; IEEE Cat. No. 89CH2791-2, pp. 845–848. IEEE, New York.CrossRefGoogle Scholar
  7. 7.
    Silverstein FE, Martin RW, Kimmeym MV, Jiranek GC, Franklin DW, Proctor A. Experimental evaluation of an endoscopic ultrasound probe: In vitro and in vivo canine studies. Gastroenterology 1989; 88: 1058–1062.Google Scholar
  8. 8.
    Sanghvi NT, Wiersema M, Reilly CR, Smith PE, Franklin TD. PC based high resolution, high frequency US system for gastroenterology. IEEE Ultrasonics Symposium Proceedings 1990, pp. 1477–1479. IEEE, New York.CrossRefGoogle Scholar
  9. 9.
    Pandian NG. Intravascular and intracardiac ultrasound imaging: An old concept, now on the road to reality. Circulation 1989; 88: 1091–1094.CrossRefGoogle Scholar
  10. 10.
    Yock PG, Linker DT, Angelsen BA. Two dimensional intravascular ultrasound: Technical development and initial clinical experience. J Am Soc Echo 1989; 2: 296–304.Google Scholar
  11. 11.
    Hodgson JM, Graham SP, Savakus AD, Dame SG, Stephens DN, Brand D, Sheehan H, Eberle MJ. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging 1989; 4: 186–193.CrossRefGoogle Scholar
  12. 12.
    Lockwood GR, Ryan LK, Gotlieb AI, Lonn E, Hunt JW, Lui P, Foster FS. In vitro high resolution intravascular imaging in muscular and elastic arteries. J Am Coll Cardiol 1992; 20: 153–160.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown LF. Ferroelectric polymers: Current and future applications. IEEE Ultrasonics Symposium Proceedings 1992, pp. 539–545, IEEE, New York.CrossRefGoogle Scholar
  14. 14.
    Foster FS, Strban M, Austin G. The ultrasound macroscope. Ultrasonic Imaging 1984; 6: 243–261.PubMedCrossRefGoogle Scholar
  15. 15.
    Sherar MD, Noss MB, Foster FS. Ultrasound back- scatter microscopy images the internal structure of living tumor spheroids multicellular tumour spheroids. Nature 1987; 330: 493–495.PubMedCrossRefGoogle Scholar
  16. 16.
    Sherar MD, Starkoski BG, Taylor WB, Foster FS. A 100 MHz B-scan ultrasound backscatter microscope. UItrasonic Imaging 1989; 11: 95–105.CrossRefGoogle Scholar
  17. 17.
    Begui ZE. Acoustic properties of refractive media of the eye. J Acoust Soc Am 1954; 26: 365–372.CrossRefGoogle Scholar
  18. 18.
    Jansson F, Sundmark E. Determination of the velocity of ultrasound in ocular tissues at different temperatures. Acta Ophthalmol 1961; 39: 899–911.Google Scholar
  19. 19.
    Rivara A, Sanna G. Determination of the velocity of ultrasound in the ocular tissues of human and swine (in Italian). Ann Ottalmol Clin Ocul 1962; 88: 675–680.PubMedGoogle Scholar
  20. 20.
    Tschewnenko AA. Über die Ausbreitungsgeschwin-digkeit des Ultraschalls in den augengeweben (in German). Z Humbolt Univ Berlin Math Naturwiss Reihe 1965; 14: 67–69.Google Scholar
  21. 21.
    Thijssen MJ, Mol MJ, Timer MR. Acoustic parameters of ocular tissues. Ultrasound Med Biol 1983; 11: 157–161.CrossRefGoogle Scholar
  22. 22.
    Coleman DJ, Lizzi FL, Jack R. Ultrasonography of the Eye and Orbit. 1977. Lea & Febiger, Philadelphia.Google Scholar
  23. 23.
    Feleppa EJ, Lizzi FL, Coleman DJ, Yaremko MM. Diagnostic spectrum analysis in ophthalmology: A physical perspective. Ultrasound Med Biol 1986; 12: 623–631.PubMedCrossRefGoogle Scholar
  24. 24.
    Lizzi FL, Ostromogilsky M, Feleppa FJ, Rorke MC, Yaremko MM. Relationship of ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans UFFC 1987; 33: 319–329.Google Scholar
  25. 25.
    Ye SG, Harasiewicz KA, Pavlin CJ, Foster FS. Ultrasound characterization of ocular tissue in the frequency range from 50MHz to 100 MHz. IEEE Trans UFFC 1993. In press.Google Scholar
  26. 26.
    Bamber JC. Attenuation and absorption. In: Hill CR, Ed. Physical Principles of Medical Ultrasonics. 1986, Chapter 4. Ellis Horwood Limited, London.Google Scholar
  27. 27.
    Goss SA, Johonston RL, Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 1978; 64: 423–457.PubMedCrossRefGoogle Scholar
  28. 28.
    Wild JJ, Reid JM. Application of echo-ranging techniques to the determination of the structure of biological tissues. Science 1952; 115: 226–230.PubMedCrossRefGoogle Scholar
  29. 29.
    Howry DH, Bliss WR. Ultrasonic visualization of soft tissue structures of the body. J Lab Clin Med 1952; 40: 579–592.PubMedGoogle Scholar
  30. 30.
    Mundt GH, Hughes WF. Ultrasonics in ocular diagnosis. Am J Ophthalmol 1956; 42: 488–498.Google Scholar
  31. 31.
    Ossoinig KC. Standardized echography: Basic principles, clinical applications, and results. Int Ophthalmol Clin 1979; 19: 127–210.PubMedCrossRefGoogle Scholar
  32. 32.
    Baum G. The effect of ultrasonic radiation upon the eye and ocular adnexa. Am J Ophthalmol 1956; 42: 696 - 706.PubMedGoogle Scholar
  33. 33.
    Coleman DJ, Lizzi FL, Jack R. Ultrasonography of the Eye and Orbit. 1977. Lea & Febiger, Philadelphia.Google Scholar
  34. 34.
    Purnell EW. Ultrasonic biometry of the posterior ocular coats. Trans Am Ophthalmol Soc 1980; 78: 1027–1078.PubMedGoogle Scholar
  35. 35.
    Lizzi FL, Feleppa EJ, Coleman DJ. Ultrasonic ocular tissue characterization. In: Greenleaf JF, Ed. Tis-sue Characterization with Ultrasound: Volume 11, Results and Applications. 1986, pp. 41–60. CRC Press, Boca Raton.Google Scholar
  36. 36.
    Hill CR, Ed. Physical Principles of Medical Ultrasonics. 1986. Ellis Horwood Limited, London.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • Charles J. Pavlin
    • 1
  • FS Foster
    • 2
  1. 1.Department of Ophthalmology Faculty of MedicineUniversity of TorontoTorontoCanada
  2. 2.Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations