Skip to main content

Flow Patterns and the Localization of Vascular Disease in the Circulation

  • Conference paper
Endovascular Interventional Neuroradiology

Part of the book series: Contemporary Perspectives in Neurosurgery ((COPENEU))

  • 90 Accesses

Abstract

Fluid mechanical factors play an important role in the localization of sites of atherosclerosis, the focal deposition of platelets resulting in thrombosis, and the formation of aneurysms in the human circulation. The sites are confined mainly to regions of geometrical irregularity where vessels branch, curve, and change diameter and where blood is subjected to sudden changes in velocity, direction, or both. In such regions, flow is disturbed and separation of streamlines from the wall with formation of eddies are likely to occur. We describe here the flow patterns and fluid mechanical stresses at these sites and consider their possible involvement in the genesis of the above-mentioned vascular diseases. However, to understand the mechanics of flow in branching, expanding, and curved vessels, it is first necessary to deal with some basic fluid dynamic concepts. It is particularly necessary, as there is a common misunderstanding among physicians and surgeons that the formation of eddies at sites of disturbed flow represents turbulent flow. As explained below, this is usually not the case. As is the custom in many textbooks of medical physiology, we begin our lesson in fundamental hydrodynamics by defining the steady laminar flow of a liquid through a circular cylindrical tube, known as Poiseuille flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karino T, Goldsmith HL: Rheological factors in thrombosis and haemostasis. In Bloom AL, Thomas DP (eds), Haemostasis and Thrombosis (2nd Ed.). London: Churchill Livingstone, 1986, pp. 739–755.

    Google Scholar 

  2. Goldsmith HL: The flow of model particles and blood cells and its relation to thrombogenesis. Prog Hemost Thromb 1972;1:97–139.

    PubMed  CAS  Google Scholar 

  3. Goldsmith HL, Mason SG: The microrheology of dispersions. In Eirich FR (ed), Rheology, Theory and Applications (Vol. IV). Orlando, FL: Academic Press, 1967, pp. 87–205.

    Google Scholar 

  4. Goldsmith HL, Marlow J: Flow behaviour of erythrocytes. I. Rotation and deformation in dilute suspensions. Proc R Soc Lond [Biol] 1972;182:351–384.

    Article  Google Scholar 

  5. Schmid-Schönbein H, Wells R: Fluid-drop like transition of erythrocytes under shear. Science 1969;165:228–231.

    Article  Google Scholar 

  6. Smoluchowski M von: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z Physik Chem 1917;92:129–168.

    Google Scholar 

  7. Van de Ven TGM, Mason SG: The microrheology of colloidal dispersions. VII. Orthokinetic doublet formation of spheres. Colloid Polymer Sei 1977;255:468–479.

    Article  Google Scholar 

  8. Bell DN, Teirlinck HC, Goldsmith HL: Platelet aggregation in Poiseuille flow. I. A double infusion technique. Microvasc Res 1984;27:297–315.

    Article  PubMed  CAS  Google Scholar 

  9. Bell DN, Goldsmith HL: Platelet aggregation in Poiseuille flow. II. Effect of shear rate. Microvasc Res 1984;27:316–330.

    Article  PubMed  CAS  Google Scholar 

  10. MacDonald DA: Blood Flow in Arteries (2nd ed). Baltimore: Edward Arnold, 1974.

    Google Scholar 

  11. Anliker M, Casty M, Friedli P, Kubli R, Keller H: Non-invasive measurement of blood flow. In Hwang NHC, Normann NA (eds). Cardiovascular Flow Dynamics and Measurements. Baltimore: University Park Press, 1977, pp. 43–88.

    Google Scholar 

  12. Motomiya M, Karino T: Particle flow behavior in the human carotid artery bifurcation. Stroke 1984;15:50–56.

    Article  PubMed  CAS  Google Scholar 

  13. Bollinger A, Butti P, Barras P, Trachler H, Siegenthaler N: Red blood cell velocity in nailfold capillaries of man, measured by a television microscopy technique. Microvasc Res 1974;6:61–72.

    Article  Google Scholar 

  14. Bell DN, Spain S, Goldsmith HL: The ADP-induced aggregation of human platelets in flow through tubes. II. Effect of shear rate, donor sex and ADP concentration. Biophys J 1989;56:829–843.

    Article  PubMed  CAS  Google Scholar 

  15. Bell DN, Spain S, Goldsmith HL: The effect of red blood cells on the ADP-induced aggregation of human platelets in flow throught tubes. Thromb Haemost 1990;63:112–121.

    PubMed  CAS  Google Scholar 

  16. Burgess-Wilson ME, Green S, Heptinstall S, Mitchell JRA: Spontaneous platelet aggregation in whole blood: dependence on age and haematocrit Lancet 1984;2: 1213.

    CAS  Google Scholar 

  17. Saniabadi AR, Lowe GDO, Barbenel JC, Forbes CD: A comparison of spontaneous platelet aggregation in whole blood with platelet rich plasma: additional evidence for the role of ADP. Thromb Haemost 1984;51:115–118.

    PubMed  CAS  Google Scholar 

  18. Goldsmith HL, Marlow J: Flow behavior of erythrocytes. II. Concentrated suspensions of ghost cells. J Colloid Interface Sei 1979;73:383–407.

    Article  Google Scholar 

  19. Karnis A, Goldsmith HL, Mason SG: The kinetics of flowing dispersions. I. Concentrated suspensions of rigid particles. J Colloid Interface Sei 1966;22:531–553.

    CAS  Google Scholar 

  20. Gauthier FP, Goldsmith HL, Mason SG: Flow of suspensions through tubes. X. Liquid drops as models of erythrocytes. Biorheology 1972;9:205–224.

    PubMed  CAS  Google Scholar 

  21. Goldsmith HL: Red cell motions and wall interactions in tube flow. Fed Proc 1971;30:1578–1588.

    PubMed  CAS  Google Scholar 

  22. Vadas EB, Goldsmith HL, Mason SG: The microrheology of colloidal dispersions. III. Concentrated emulsions. Trans Soc Rheol 1976;20:373–407.

    CAS  Google Scholar 

  23. Reidy MA, Bowyer DE: Scanning electron microscopy of arteries: the morphology of aortic endothelium in hemodynamically stressed areas associated with branches. Atherosclerosis 1977;26:181–194.

    Article  PubMed  CAS  Google Scholar 

  24. Glagov S: Hemodynamic risk factors: mechanical stress, mural architecture, medial nutrition and the vulnerability of arteries to atherosclerosis. In Wissler RW, Geer JC (eds), The Pathogenesis of Atherosclerosis. Baltimore: Williams & Wilkins, 1972, Ch. 6.

    Google Scholar 

  25. Fry DL: Hemodynamic factors in atherogenesis. In Scheinberg P (ed), Cardiovascular Diseases. New York: Raven Press, 1976, pp. 77–95.

    Google Scholar 

  26. Roach MR: The effect of bifurcations and stenoses on arterial disease, In Hwang NHC, Normann NA (eds), Cardiovascular Flow Dynamics and Measurements. Baltimore: University Park Press, 1977, pp. 489–593.

    Google Scholar 

  27. Mustard JF, Murphy EA, Rowsell HC, Downie HG: Factors influencing thrombus formation in vivo. Am J Med 1962;33:621–647.

    Article  PubMed  CAS  Google Scholar 

  28. Mustard JF, Packham MA: The role of blood and platelets in atherosclerosis and the complications of atherosclerosis. Thromb Diathes Haemorrh 1975;33:444–456.

    CAS  Google Scholar 

  29. Geissinger HD, Mustard JF, Rowsell HC: The occurrence of microthrombi on the aortic endothelium of swine. Can Med Assoc J 1962;87:405–408.

    PubMed  CAS  Google Scholar 

  30. Mitchell JRA, Schwartz CJ: The relationship between myocardial lesions and coronary disease. II. A select group of patients with massive cardiac necrosis of scarring. Br Heart J 1963;25:1–24.

    Article  PubMed  CAS  Google Scholar 

  31. Packham MA, Roswell HC, Jorgensen L, Mustard JF: Localized protein accumulation in the wall of the aorta. Exp Mol Pathol 1967;7:214–232.

    Article  PubMed  CAS  Google Scholar 

  32. Yu SK, Goldsmith HL: Behavior of model particles and blood cells at spherical obstructions in tube flow. Micro vase Res 1973;6:5–31.

    Article  CAS  Google Scholar 

  33. Karino T, Goldsmith HL: Flow behaviour of blood cells and rigid spheres in an annular vortex. Philos Trans R Soc Lond [Biol] 1977;279:413–445.

    Article  CAS  Google Scholar 

  34. Karino T, Kwong HHM, Goldsmith HL: Particle flow behavior in models of branching vessels. I. Vortices in 90° T-junctions. Biorheology 1979; 16:231–247.

    PubMed  CAS  Google Scholar 

  35. Karino T, Goldsmith HL: Particle flow behavior in models of branching vessels. II. Effect of branching angle and diameter ratio on flow patterns. Biorheology 1985;22:87–104.

    CAS  Google Scholar 

  36. Karino T, Motomiya M: Flow visualization in isolated transparent natural blood vessels. Biorheology 1983;20:119–127.

    PubMed  CAS  Google Scholar 

  37. Karino T, Motomiya M: Flow through a venous valve and its implication in thrombus formation. Thromb Res 1984;36:245–257.

    Article  PubMed  CAS  Google Scholar 

  38. Karino T, Motomiya M, Goldsmith HL: Flow patterns in model and natural vessels. In Stanley J (ed), Biologic and Synthetic Vascular Prostheses. Orlando, FL: Grune & Stratton, 1982, pp. 153–178.

    Google Scholar 

  39. Karino T, Motomiya M, Goldsmith HL: Flow patterns at the major T-junctions of the dog descending aorta. J Biomechanics 1990;23:537–548.

    Article  CAS  Google Scholar 

  40. Karino T: Microscopic structure of disturbed flows in the arterial and venous systems, and its implication in the localization of vascular diseases. Int Angiol 1986;4:297–325.

    Google Scholar 

  41. Asakura T, Karino T: Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 1990;66:1045–1066.

    PubMed  CAS  Google Scholar 

  42. Macagno EO, Hung TK: Computational and experimental study of a captive annular eddy. J Fluid Mech 1967;28:43–64.

    Article  Google Scholar 

  43. Cox RG, Hsu SK: The lateral migration of solid particles in a laminar flow near a plane wall. Int J Multiphase Flow 1977;3:201–222.

    Article  CAS  Google Scholar 

  44. Karnis A, Mason SG: The flow of suspensions through tubes. VI. Meniscus effects. J Colloid Interface Sei 1967;23:120–133.

    Article  CAS  Google Scholar 

  45. Karino T, Goldsmith HL: Aggregation of platelets in an annular vortex distal to a tubular expansion. Microvasc Res 1979;17:217–237.

    Article  PubMed  CAS  Google Scholar 

  46. Karino T, Goldsmith HL: Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc Res 1979;17:238–262.

    Article  PubMed  CAS  Google Scholar 

  47. Turitto VT: Viscosity, transport and thrombogenesis. Prog Hemost Thromb 1982;6:139–201.

    PubMed  CAS  Google Scholar 

  48. Goldsmith HL, Karino T: Mechanically induced thromboemboli. In Hwang, NHC, Gross DR, Patel DJ (eds), Quantitative Cardiovascular Studies: Clinical and Research Applications. Baltimore: University Park Press, 1978, pp. 289–351.

    Google Scholar 

  49. Karino T, Goldsmith HL: Role of cell-wall interactions in thrombogenesis and atherogenesis: a microrheological study. Biorheology 1984;21:587–601.

    PubMed  CAS  Google Scholar 

  50. Diener L, Ericsson JLE, Lund F: The role of venous valve pockets in thrombogenesis: a postmortem study in a geriatric unit. In Shimamoto T, Numano F (eds), Atherogenesis. Amsterdam: Excerpta Medica, 1969, pp. 125–131.

    Google Scholar 

  51. Sevitt S: Pathology and pathogenesis of deep vein thrombi. In Bergan JJ, Yao JST (eds), Venous Problem. Chicago: Year Book, 1978, pp. 257–279.

    Google Scholar 

  52. Goldsmith HL, and Turitto VT: Rheological aspects of thrombosis and haemostasis: basic principles and applications. Thromb Haemost 1986;55:415–435.

    PubMed  CAS  Google Scholar 

  53. Kristiansen K, Krog J: Electromagenetic studies on the blood flow through the carotid system in man. Neurology 1962;12:20–22.

    PubMed  CAS  Google Scholar 

  54. Uematsu S, Yang A, Preziosi TJ, Kouba R, Toung TJK: Measurement of carotid blood flow in man and its clinical application. Stroke 1983;14:256–266.

    Article  PubMed  CAS  Google Scholar 

  55. Sohara Y, Karino T: Secondary flows in the dog aortic arch. In Harada M (ed), Fluid Control and Measurement. Oxford: Pergamon Press, 1985, pp. 143–147.

    Google Scholar 

  56. Karino T, Kobayashi N, Mabuchi S, Takeuchi S: Role of hemodynamic factors in the localization of saccular aneurysms in the human circle of Willis (abstract). Biorheology 1989;26:526.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Goldsmith, H.L., Karino, T. (1995). Flow Patterns and the Localization of Vascular Disease in the Circulation. In: Holtzman, R.N.N., Stein, B.M., Winston, H. (eds) Endovascular Interventional Neuroradiology. Contemporary Perspectives in Neurosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2464-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2464-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7548-0

  • Online ISBN: 978-1-4612-2464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics