Targeting and Control of Chaos

  • Eric J. Kostelich
  • Ernest Barreto
Part of the Mathematical Modelling book series (MMO, volume 8)

Abstract

The “control of chaos” refers to a procedure in which a saddle fixed point in a chaotic attractor is stabilized by means of small time dependent perturbations. Control may be switched between different saddle periodic orbits, but it is necessary to wait for the trajectory to enter a small neighborhood of the saddle point before the control algorithm can be applied.

This paper describes an extension of the control idea, called “targeting.” By targeting, we mean a process in which a typical initial condition can be steered to a prespecified point on a chaotic attractor using a sequence of small, time dependent changes to a convenient parameter. We show, using a 4-dimensional mapping describing a kicked double rotor, that points on a chaotic attractor with two positive Lyapunov exponents can be steered between typical saddle periodic points extremely rapidly—in as little 12 iterations on the average. Without targeting, typical trajectories require 10,000 or more iterations to reach a small neighborhood of saddle periodic points of interest.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Ott, C. Grebogi and J. A. Yorke, Phys. Rev. Lett. 64 (1990), 1196.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    W. L. Ditto, S. N. Rauseo and M. L. Spano, Phys. Rev. Lett. 65 (1990), 3211.CrossRefGoogle Scholar
  3. [3]
    T. Shinbrot, E. Ott, C. Grebogi and J. A. Yorke, Phys. Rev. Lett. 65 (1990), 3250.CrossRefGoogle Scholar
  4. [4]
    T. Shinbrot, W. Ditto, C. Grebogi, E. Ott, M. Spano and J. A. Yorke, Phys. Rev. Lett. 68 (1992), 2863.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. J. Kostelich, C. Grebogi, E. Ott and J. A. Yorke, Physica D 25 (1987), 347; Phys. Lett. A 118 (1986), 448; erratum 120A (1987), 497.Google Scholar
  6. [6]
    F. J. Romeiras, C. Grebogi, E. Ott and W. P. Dayawansa, Physica D 58 (1992), 165.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J. L. Kaplan and J. A. Yorke, in Functional Differential Equations and Approximation of Fixed Points, ed. by H.-O. Peitgen and H.-O. Walter. Berlin: Springer-Verlag, Lecture Notes in Mathematics, Vol. 730, p. 204.Google Scholar
  8. [8]
    J. D. Farmer, E. Ott and J. A. Yorke, Physica D 7 (1983), 153.MathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Benettin, L. Galgani, A. Giogilli, and J.-M. Strelcyn, Meccanica 15 (1980), 9, 21.CrossRefGoogle Scholar
  10. [10]
    E. J. Kostelich, C. Grebogi, E. Ott and J. A. Yorke, Phys. Rev. E 47 (1993), 305.MathSciNetCrossRefGoogle Scholar
  11. [11]
    E. Barreto, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. E 51 (1995), 4169.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Eric J. Kostelich
    • 1
  • Ernest Barreto
    • 2
  1. 1.Department of MathematicsArizona State UniversityTempeUSA
  2. 2.Department of PhysicsUniversity of MarylandMarylandUSA

Personalised recommendations