Skip to main content

Weakly Symmetric Spaces

  • Chapter
Topics in Geometry

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 20))

Abstract

A Riemannian manifold M is called weakly symmetric, if for any two points p and q in M, there exists an isometry f of M which interchanges p and q. An equivalent condition is that for every geodesic γ(t) in M, there exists an isometryfwhich reverses the geodesic, i. e.f(γ(t)) = γ(-t). A Riemannian symmetric space is clearly weakly symmetric. These manifolds were first studied by A.Selberg [S] who showed that for a weakly symmetric space, the algebra of isometry invariant differential operators is commutative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Berndt and L. Vanhecke, Geometry of weakly symmetric spaces, Preprint 1995.

    Google Scholar 

  2. J. Berndt, O.Kowalski and L. Vanhecke, Geodesies in weakly symmetric spaces, Preprint 1995.

    Google Scholar 

  3. J. Berndt, F. Ricci and L. Vanhecke, Weakly symmetric groups of Heisenberg type, Preprint 1995.

    Google Scholar 

  4. J. E. D’Atri, Geodesic spheres and symmetries in naturally reductive spaces,Michigan Math. J.22 (1975), 71 – 76.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. E. D’Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups,Mem. Amer. Math. Soc.18, No. 215, (1979).

    MathSciNet  Google Scholar 

  6. C. Gordon, Naturally reductive homogeneous Riemannian manifolds,Can. J. Math.37 (1985), 467 – 487.

    Article  MATH  Google Scholar 

  7. C. Gordon, Homogeneous Riemannian manifolds whose geodesies areorbits, see article in this volume.

    Google Scholar 

  8. J.C. Gonzalez-Davila and L. Vanhecke, New examples of weakly symmetric spaces, Preprint 1995.

    Google Scholar 

  9. H. Gluck, F. Warner and W. Ziller, The geometry of the Hopf fixa-tions,L’Ens. Math.32 (1986), 173 – 198.

    MathSciNet  MATH  Google Scholar 

  10. M. Kerr, Some new homogenous Einstein metrics on symmetricspaces, Preprint 1994.

    Google Scholar 

  11. M. Kerr, Homogeneous Einstein metrics on products of symmetric spaces, Preprint 1995.

    Google Scholar 

  12. O. Kowalski, F. Prüfer and L. Vanhecke, D’Atri spaces, see article in this volume.

    Google Scholar 

  13. O. Kowalski and L. Vanhecke, A generalization of a theorem on naturally reductive homogeneous spaces,Proc. Amer. Math. Soc.91, (1984), 433 – 435.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesies,Boll. Un. Math. Ital. B(7) 5 (1991), 189 – 246.

    MathSciNet  MATH  Google Scholar 

  15. M. Kreck and S. Stolz, A diffeomorphism classification of 7-dimen- sional homogeneous Einstein manifolds with SU(2) x SU(2) x U(l) symmetry,Ann. Math.127 (1988), 373 – 388.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Ricci, Commutative algebras of invariant functions on groups of Heisenberg type,J. London Math. Soc.32 (1985), 265 – 271.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Riehm, The automorphism group of a composition of quadratic forms,Trans. A.M.S.269 (1982), 403 – 414.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Riehm, Explicit spin representations and Lie algebras of Heisen¬berg type,J. London Math. Soc.29 (1984), 49 – 62.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,J. Indian Math. Soc.20 (1956), 47 – 87.

    MathSciNet  MATH  Google Scholar 

  20. M. Wang and W. Ziller, On normal homogeneous Einstein manifolds,Ann. Scient. Ec. Norm. Sup.18 (1985), 563 – 633.

    MathSciNet  MATH  Google Scholar 

  21. M. Wang and W. Ziller, Einstein metrics on principal torus bundles,J. Diff. Geom.31 (1990), 215 – 248.

    MathSciNet  MATH  Google Scholar 

  22. W. Ziller The Jacobi equation on naturally reductive compact Rieümannian homogeneous spaces,Comm. Math. Helv.52 (1977), 573– 590.

    Google Scholar 

  23. W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces,Math. Ann.259 (1982), 351 – 358.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Ziller, W. (1996). Weakly Symmetric Spaces. In: Gindikin, S. (eds) Topics in Geometry. Progress in Nonlinear Differential Equations and Their Applications, vol 20. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2432-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2432-7_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7534-3

  • Online ISBN: 978-1-4612-2432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics