Skip to main content

Particles, vortex dynamics and stochastic partial differential equations

  • Chapter
Stochastic Modelling in Physical Oceanography

Part of the book series: Progress in Probability ((PRPR,volume 39))

Abstract

The derivation of quasilinear stochastic partial differential equations (SPDE’s) for mass distributions and their generalizations is reviewed in Section 2. Special emphasis is given to the vorticity distribution and its macroscopic limit in a 2D-fluid. In Section 4 and 5 bilinear SPDE’s on weighted Hilbert spaces are derived from the underlying particle system. Moreover, it is shown that spatially homogeneous initial conditions imply that the solution is also spatially homogeneous. I.e., (non-Gaussian!!) homogeneous random fields are derived from an underlying particle system using SPDE methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, Robert J. (1981) The Geometry of Random Fields. John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  2. Arnold, L., Curtain, R.F., Kotelenez, P. (1980) Nonlinear stochastic evolution equations in Hilbert space. Universität Bremen, FDS, Report No. 17.

    Google Scholar 

  3. Chorin, A.J. (1973) Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796.

    Article  MathSciNet  Google Scholar 

  4. Chorin, A.J. (1991) Statistical mechanics and vortex motion. Lectures in Applied Mathematics, 28.

    Google Scholar 

  5. Dawson, D.A. (1975) Stochastic evolution equations and related measure processes, J. Multivariate Analysis, 5, 1–52.

    Article  MATH  Google Scholar 

  6. Dawson, D.A. Vaillancourt, J. (1994) Stochastic McKean-Vlasov Equations. (Preprint — Technical Report No. 242, Carleton University Lab. Stat. Probab.)

    Google Scholar 

  7. De Acosta, A. (1982) Invariance principles in probability for triangular arrays of B-valued random vectors and some applications, Ann. Probability, 2, 346–373.

    Article  Google Scholar 

  8. Dudley, R.M. (1989) Real Analysis and Probability, Wadsworth and Brooks, Belmont, California.

    MATH  Google Scholar 

  9. Dynkin, E.B. (1965) Markov Processes, I, Springer Verlag, Berlin.

    MATH  Google Scholar 

  10. Fife, P. (1992) Models for phase separation and their mathematics. To appear in: Nonlinear Partial Differential Equations and Applications, M. Mimura and T. Nishida (eds.) Kinokuniya Pubs., Tokyo.

    Google Scholar 

  11. Ikeda, V., Watanabe, S.(1981) Stochastic Differential Equations and Diffusion Processes. North Holland, Amsterdam.

    MATH  Google Scholar 

  12. Il’in, A.M., Khasminskii, R.Z. (1964) On equations of Brownian motion. Probab. Th. Appl. 9 No.3 (in Russian).

    Google Scholar 

  13. Kotelenez, P. (1992) Existence, uniqueness and smoothness for a class of function valued stochastic partial differential equations, Stochastics and Stochastic Reports, 41, 177–199.

    MathSciNet  MATH  Google Scholar 

  14. Kotelenez, P. (1995a) A stochastic Navier-Stokes equation for the vorticity of a two-dimensional fluid, Ann. Appl. Probability.

    Google Scholar 

  15. Kotelenez, P. (1995b) A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation, Prob. Th. Rel. Fields, 102, 159–188.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kotelenez, P. (1995c) Smooth and homogeneous solutions of bilinear stochastic partial differential equations arising in systems of particles and vortices, In preparation.

    Google Scholar 

  17. Kotelenez, P. (1995d) Macroscopic limit theorems for the vorticity distribution in an incompressible 2D-fluid, In preparation.

    Google Scholar 

  18. Kotelenez, P., Wang, K. (1994) Newtonian particle mechanics and stochastic partial differential equations. In D.A. Dawson (eds.) Measure Valued Processes, Stochastic Partial Differential Equations and Interacting Systems, Centre de Recherche Mathématiques, CRM Proceedings and Lecture Notes, Volume 5, 139–149.

    Google Scholar 

  19. Krylov, N.V., Rozovskii, B.L. (1979) On stochastic evolution equations, Itogi Nauki i Tehniki, VINITI, 71–146.

    MathSciNet  Google Scholar 

  20. Lebowitz, J.L., Rubin, E. (1963) Dynamical study of Brownian motion. Phys. Rev. 131, 2381–2396.

    Article  MathSciNet  Google Scholar 

  21. Marchioro, C., Pulvirenti, M. (1982) Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys. 84, 483–503.

    Article  MathSciNet  MATH  Google Scholar 

  22. Nelson, E. (1972) Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J.

    Google Scholar 

  23. Pardoux, E. (1975) Equations aux derivees partielles stochastique non lineaires monotones. Etude de solutions fortes de type Itô. These.

    Google Scholar 

  24. Pitt, L.D. (1978) Scaling limits of Gaussian rector fields, J. Multivariate Anal. 8, 45–54.

    Article  MathSciNet  MATH  Google Scholar 

  25. Puckett, E.G. (199x) Vortex methods: An introduction and survey of selected research topics. Centre for Mathematics and its Applications, Australian National University, Canberra (Preprint CMA-MR22-91).

    Google Scholar 

  26. Walsh, J.B. (1986) An introduction to stochastic partial differential equations, In P.L. Hennequin (ed.) Ecole d’Ete de Probabilites de Saint-Flour XIV-1984, LNM 1180, Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Kotelenez, P. (1996). Particles, vortex dynamics and stochastic partial differential equations. In: Adler, R.J., Müller, P., Rozovskii, B.L. (eds) Stochastic Modelling in Physical Oceanography. Progress in Probability, vol 39. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2430-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2430-3_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7533-6

  • Online ISBN: 978-1-4612-2430-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics