Skip to main content

Coenzyme Chemistry

  • Chapter
Bioorganic Chemistry

Part of the book series: Springer Advanced Texts in Chemistry ((SATC))

Abstract

Cellular metabolism is under enzymatic control and often the enzymes involved need a substance or cofactor in order to express their catalytic activity. In these systems the protein portion of the enzyme is designated the apoenzyme and is usually catalytically inactive. The cofactor is a metal ion or a nonprotein organic substance. Many enzymes even require both cofactors. A firmly bound cofactor is called a prosthetic group. If, however, the organic cofactor is brought into play during the catalytic mechanism, it is referred to as a coenzyme. The complex formed by the addition of the coenzyme to the apoenzyme is referred to as a holoenzyme (or enzyme, for short).

“... it is by logic that we prove, but by intuition that we discover.” J.H. Poincaré

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Metzler (1977), Biochemistry, The Chemical Reactions of Living Cells, Chap. 8. Academic Press, New York.

    Google Scholar 

  2. B.O. Söderberg, O. Tapia, and C.I. Bränden (1976), Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 102, 27–59.

    Google Scholar 

  3. G. DiSabato (1970), Adducts of diphosphopyridine nucleotide and carbonyl compounds. Biochemistry 9, 4594–4600.

    CAS  Google Scholar 

  4. D.J. Creighton and D.S. Sigman (1971), A model for alcohol dehydrogenase. The zinc ion catalyzed reduction of 1,10-phenanthroline-2-car-boxaldehyde by N-propyl-l, 4-dihydronicotinamide. J. Amer. Chem. Soc. 93, 6314–6316.

    CAS  Google Scholar 

  5. U. Grau, H. Kapmeyer, and W.E. Trommer (1978), Combined coenzyme-substrate analogues of various dehydrogenases. Synthesis of (3S)- and (3R)-5-(3-carboxy-3-hydroxypropyl) nicotinamide adenine dinucleotide and their interaction with (S)- and (R)-lactate-specific dehydrogenases. Biochemistry 17, 4621–4626.

    CAS  Google Scholar 

  6. J.T. van Bergen and R.M. Kellogg (1977), A crown ether NAD(P)H mimic. Complexation with cations and enhanced hydride donating ability toward sulfonium salts. J. Amer. Chem. Soc. 99, 3882–3884.

    Google Scholar 

  7. R.M. Kellogg (1984), Chiral macrocycles as reagents and catalysts. Angew. Chem. Int. Ed. Engl. 23, 782–794.

    Google Scholar 

  8. A.I. Meyers and J.D. Brown (1987), The first nonenzymatic stereospecific intramolecular reduction by an NADH mimic containing a covalently bound carbonyl moiety. J. Amer. Chem. Soc. 109, 3155–5135.

    CAS  Google Scholar 

  9. J.P. Behr and J.-M. Lehn (1978), Enhanced rates of dihydropyridine to pyridinium hydrogen transfer in complexes of an active macrocyclic receptor molecule. Chem. Comm. 143–146.

    Google Scholar 

  10. M. Kojima, F. Toda, and K. Hattori (1981), β-Cyclodextrin-nicotinamide as a model for NADH dependent enzymes. J. Chem. Soc. Perkin I, 1647–1651.

    Google Scholar 

  11. G.A. Hamilton (1971). In: Progress in Bioorganic Chemistry (E.T. Kaiser and T.J. Kézdy, Eds.), Vol. 1, pp. 83–137. Wiley-Interscience, New York.

    Google Scholar 

  12. C.J. Suckling and H.C.S. Wood (1979), Should organic chemistry meddle in biochemistry? Chem. Britain 5, 243–248.

    Google Scholar 

  13. A.J. Irwin and J.B. Jones (1976), Stereoselective horse liver alcohol dehydrogenase catalyzed oxidoreductions of some bicyclic[2.2.1] and [3.2.1] ketones and alcohols. J. Amer. Chem. Soc. 98, 8476–8482.

    CAS  Google Scholar 

  14. A.J. Irwin and J.B. Jones (1977), Regiospecific and enantioselective horse liver alcohol dehydrogenase catalyzed oxidations of some hydroxycyclo-pentanes. J. Amer. Chem. Soc. 99, 1625–1630.

    CAS  Google Scholar 

  15. J.B. Jones and J.F. Beck (1976), Application of Biochemical Systems in Organic Chemistry. In: Techniques of Chemistry Series (J.B. Jones, C.J. Sih, and D. Perlman, Eds.), Part I, pp. 107–401. Wiley, New York.

    Google Scholar 

  16. V. Prelog (1964), Specification of the stereochemistry of some oxidoreductase by diamond lattice sections. Pure & Appl Chem. 9, 119–130.

    CAS  Google Scholar 

  17. J.B. Jones and J.J. Jakovac (1982), A new cubic-space section model for predicting the specificity of horse liver alcohol dehydrogenase-catalyzed oxidoreductions. Can. J. Chem. 60, 19–28.

    CAS  Google Scholar 

  18. J.B. Jones (1993), Probing the specificity of synthetically useful enzymes, Aldrichimica Acta 26, No. 4, 105–112.

    CAS  Google Scholar 

  19. C. Walsh (1980), Flavin coenzymes; At the crossroads of biological redox chemistry. Acc. Chem. Res. 13, 148–155.

    CAS  Google Scholar 

  20. D.J. Creighton, J. Hajdu, G. Mooser, and D.S. Sigman (1973), Model dehydrogenase reactions. Reduction of N-methylacridinium ion by reduced nicotinamide adenine dinucleotide and its derivatives. J. Amer. Chem. Soc. 95, 6855–6867.

    CAS  Google Scholar 

  21. P. Hemmerich, V. Massey, and G. Weber (1967), Photo-induced benzyl substitution of flavins by phenylacetate: A possible model for flavoprotein catalysis. Nature 213, 728–730.

    CAS  Google Scholar 

  22. M. Brüstlein and T.C. Bruice (1972), Demonstration of a direct hydrogen transfer between NADH and a deazaflavin. J. Amer. Chem. Soc. 94, 6548–6549.

    Google Scholar 

  23. J. Fisher and C. Walsh (1974), Enzymatic reduction of 5-deazariboflavine from reduced nicotinamide adenine dinucleotide by direct hydrogen transfer. J. Amer. Chem. Soc. 96, 4345–4346.

    CAS  Google Scholar 

  24. D. Eirich, G. Vogels, and R. Wolfe (1978), Proposed structure of coenzyme F420 from Methanobacterium. Biochemistry 17, 4583–4593.

    CAS  Google Scholar 

  25. J.M. Sayer, P. Conlon, J. Hupp, J. Fancher, R. Bélanger, and E.J. White (1979), Reduction of 1,3-dimethyl-5-(p-nitrophenylimino) barbituric acid by thiols. A high-velocity flavin model reaction with an isolable intermediate. J. Amer. Chem. Soc. 101, 1890–1893.

    CAS  Google Scholar 

  26. S. Shinkai, K. Kameoka, K. Ueda, and O. Manabe (1987), “Remote control” of flavin reactivities by an intramolecular crown ether serving as a metal-binding site. J. Amer. Chem. Soc. 109, 923–924.

    Google Scholar 

  27. S. Shinkai, K. Kameoka, K. Ueda, O. Manabe, and M. Onishi (1987), “Remote control” of flavin reactivities by an intramolecular crown ether serving as a metal-binding site: Relationship between spectral properties and dissociation of the 8-sulfonamide group. Bioorg. Chem. 15, 269–282.

    Google Scholar 

  28. J. Takeda, S. Ohta, and M. Hirobe (1985), Rate-enhancing effect of intramolecular linkage of flavin-porphyrin on reduction by 1,4-dihydropyridine. Tetrahedron Lett. 26, 4509–4512.

    CAS  Google Scholar 

  29. J. Takeda, S. Ohta, and M. Hirobe (1986), Synthesis and properties of novel flavin-linked porphyrin. Heterocycles 24, 269.

    Google Scholar 

  30. W.H. Rastetter, T.R. Gadek, J.P. Tane, and J.W. Frost (1979), Oxidations and oxygen transfer effected by a flavin N(5)-oxide. A model for flavin-dependent monooxygenases. J. Amer. Chem. Soc. 101, 2228–2231.

    CAS  Google Scholar 

  31. H.W. Orf and D. Dolphin (1974), Oxaziridines as possible intermediates in flavin monooxygenases. Proc. Nat. Acad. Sci. USA 71, 2646–2650.

    CAS  Google Scholar 

  32. G. Eberlein and T.C. Bruice (1982), One- and two-electron reduction of oxygen by 1,5-dihydroflavins. J. Amer. Chem. Soc. 104, 1449–1452.

    CAS  Google Scholar 

  33. D. Vargo and M.S. Jörns (1979), Synthesis of a 4a,5-epoxy-5-deazaflavin derivative. J. Amer. Chem. Soc. 101, 7623–7626.

    CAS  Google Scholar 

  34. D.M. Jerina, J.W. Daly, B. Witkop, S. Zaltzman-Nirenberg, and S. Udenfriend (1969), 1,2-Naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. Biochemistry 9, 147–156.

    Google Scholar 

  35. G. Guroff, J.W. Daly, D.M. Jerina, J. Rensen, B. Witkop, and S. Udenfriend (1967), Hydroxylation-induced migration: The NIH shift. Science 157, 1524–1530.

    CAS  Google Scholar 

  36. J.L. Fox (1978), Chemists attack complex organic mechanisms. Chem. Eng. News May 22, pp. 28–30.

    Google Scholar 

  37. W. Adam, A. Alzérreca, J.E. Liu, and F. Yany (1977), α-Peroxylactones via dehydrative cyclization of α-hydroperoxy acids. J. Amer. Chem. Soc. 99, 5768–5773.

    Google Scholar 

  38. C. Kemal and T.C. Bruice (1976), Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: Preliminary studies of a model for bacterial luciferase. Proc. Nat. Acad. Sci. USA 73, 995–999.

    CAS  Google Scholar 

  39. S.P. Schmidt and G.B. Schuster (1978), Dioxetanone chemiluminescence by the chemically initiated electron exchange pathway. Efficient generation of excited singlet states. J. Amer. Chem. Soc. 100, 1966–1968.

    CAS  Google Scholar 

  40. B.P. Branchaud and C.T. Walsh (1985), Functional group diversity in enzymatic oxygenation reactions catalyzed by bacterial flavin-containing cyclohexanone oxygenase. J. Amer. Chem. Soc. 107, 2153–2161.

    CAS  Google Scholar 

  41. J.N. Lowe and L.L. Ingraham (1974), An Introduction to Biochemical Reactions Mechanisms, Chap. 3. Foundation of Molecular Biology Series. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  42. O.A. Gansow and R.H. Holm (1969), A proton resonance investigation of equilibra, solute structures, and transamination in the aqueous systems pyridoxaminepyruvate-zinc(II) and aluminium(III). J. Amer. Chem. Soc. 91, 5984–5993.

    CAS  Google Scholar 

  43. M. Blum and J.W. Thanassi (1977), Metal ion induced reaction specific in vitamin B6 model systems. Bioorg. Chem. 6, 31–41.

    CAS  Google Scholar 

  44. C. Walsh (1978), Chemical approaches to the study of enzymes catalyzing redox transformations. Annu. Rev. Biochem. 47, 881–931.

    CAS  Google Scholar 

  45. B. Belleau and J. Burba (1960), The stereochemistry of the enzymic decarboxylation of amino acids. J. Amer. Chem. Soc. 82, 5751–5752.

    CAS  Google Scholar 

  46. H.C. Dunathan L. Davis, P.G. Kury, and M. Kaplan (1968), The stereochemistry of enzymatic transamination. Biochemistry 7, 4532–4536.

    CAS  Google Scholar 

  47. H.C. Dunathan and J.G. Voet (1974), Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various functions from a common ancestor. Proc. Nat. Acad. Sci. USA 71, 3888–3891.

    CAS  Google Scholar 

  48. J.N. Roitenan and D.J. Cram (1971), Electrophilic substitution at saturated carbon. XLV. Dissection of mechanisms of base-catalyzed hydrogen-deuterium exchange of carbon acids into inversion, isoinversion, and racemization pathways. J. Amer. Chem. Soc. 90, 2225–2230.

    Google Scholar 

  49. J.N. Roitenan and D.J. Cram (1971), Electrophilic substitution at saturated carbon. XLVI. Crown ethers’ ability to alter role of metal cations in control of stereochemical fate of carbanions. J. Amer. Chem. Soc. 90, 2231–2241.

    Google Scholar 

  50. D.J. Cram, W.T. Ford, and L. Gosser (1968), Electrophilic substitution and saturated carbon. XXXVIII. Survey of substituent effects on stereochemical fate of fluorenyl carbanions. J. Amer. Chem. Soc. 90, 2598–2606.

    CAS  Google Scholar 

  51. M.D. Broadhurst and D.J. Cram (1974), A model for the proton transfer stages of the biological transaminations and isotopic exchange reactions of amino acids. J. Amer. Chem. Soc. 96, 581–583.

    CAS  Google Scholar 

  52. D.A. Jaeger, M.D. Broadhurst, and D.J. Cram (1979), Electrophilic substitution at saturated carbon. 52. A model for the proton transfer steps of biological transamination and the effect of a 4-pyridyl group on the base-catalyzed racemization of a carbon acid. J. Amer. Chem. Soc. 101, 717–732.

    CAS  Google Scholar 

  53. R. Breslow, A.W. Czarnik, M. Lauer, R. Leppkes, J. Winkler, and S. Zimmerman (1986), Mimics of transaminase enzymes. J. Am. Chem. Soc. 108, 1969–1979 and references therein.

    Google Scholar 

  54. I. Tabushi, Y. Kuroda, M. Yamada, H. Higashima, and R. Breslow (1985), A-(modified B6)-B-[ω-amino(ethylamino)]β-cyclodextrin as an artificial B6 enzyme for chiral amino transfer reaction. J. Amer. Chem. Soc. 107, 5545–5546.

    CAS  Google Scholar 

  55. S.E. Brown, J.H. Coates, C.J. Easton, S.J. van Eyk, S.F. Lincoln, B.L. May, M.A. Stile, C.B. Whalland, and M.L. Williams (1994), Tryptophan anion complexes of β-cyclodextrin (cyclomaltaheptaose), an aminopro-pylamino-β-cyclodextrin and its enantioselective nickel(II) complex. Chem. Commun. 47.

    Google Scholar 

  56. S.C. Zimmerman and R. Breslow (1986), Asymmetric synthesis of amino acids by pyridoxamine enzyme analogues utilizing base-acid catalysis. J. Amer. Chem. Soc. 106, 1490–1491.

    Google Scholar 

  57. B.R. Baker (1967), Design of Active-Site-Directed Irreversible Enzyme Inhibitors. J. Wiley & Sons, New York.

    Google Scholar 

  58. R.H. Abeles and A.L. Maycock (1976), Suicide enzyme inactivators. Acc. Chem. Res. 9, 313–319.

    CAS  Google Scholar 

  59. G. Schoellmann and E. Shaw (1963), Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry 2, 252–255.

    CAS  Google Scholar 

  60. V. Chowdhry and F.H. Westheimer (1979), Photoaffinity labeling of biological systems. Annu. Rev. Biochem. 48, 293–325.

    CAS  Google Scholar 

  61. M.P. Goeldner, C.G. Hirth, B. Kieffer, and G. Ourisson (1982), Photo-suicide inhibition—a step towards specific photoaffinity labeling. Trends in Biochem. Sci. 310–313.

    Google Scholar 

  62. L. Stryer (1978), Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.

    CAS  Google Scholar 

  63. R.R. Rando (1975), Mechanisms of action of naturally occurring irreversible enzyme inhibitors. Acc. Chem. Res. 8, 281–288.

    CAS  Google Scholar 

  64. R.R. Rando (1974), Chemistry and enzymology of kcat inhibitors. Science 185, 320–324.

    CAS  Google Scholar 

  65. P. Fasella and R. John (1969), Substrate analogues as specific inhibitors of pyridoxal-dependent enzymes. Proc. 4th Int. Congr. Pharmacol. 5, 184–186.

    Google Scholar 

  66. Y. Morino and M. Okamoto (1973), Labeling of the active site of cytoplasmic aspartate amino transferase by β-chloro-L-alanine. Biochem. Biophys. Res. Commun. 50, 1061–1067.

    CAS  Google Scholar 

  67. M.J. Jung and B.W. Metcalf (1975), Catalytic inhibition of γ-aminobutyric acid α-ketoglutarate transaminase of bacterial origin by 4-aminohex-5-ynoic acid, a substrate analog. Biochem. Biophys. Res. Commun. 67, 301–306.

    CAS  Google Scholar 

  68. R.R. Rando and J. de Mairena (1974), Propargyl amine-induced irreversible inhibition of non-flavin-linked amine oxidases. Biochem. Pharmacol 23, 463–466.

    CAS  Google Scholar 

  69. D. Kuo and R.R. Rando (1981), Irreversible inhibition of glutamate dicar-boxylase by α-(fluoromethyl)glutamic acid. Biochemistry 20, 506–511.

    CAS  Google Scholar 

  70. C.T. Walsh (1983), Suicide substrates: Mechanism-base enzyme inactivators with therapeutic potential. Trends in Biochem. Sci. 254–257.

    Google Scholar 

  71. P.K. Chakravarty, G.A. Krafft, and J.A. Katzenellenbogen (1982), Haloenol lactone: Enzyme-activated irreversible inactivators for serine proteases. J. Biol. Chem. 257, 610–612.

    CAS  Google Scholar 

  72. R.H. Abeles (1983), Suicide enzyme inactivations. Chem. & Eng. News, Sept. 19, 48–56.

    Google Scholar 

  73. J.L. Adams and B.W. Metcalf (1984), The synthesis of a 3-diazobycyclo-[2.2.1]heptan-2-one inhibitor of thromboxane A2 synthetase. Tetrahedron Lett. 25, 919–922.

    CAS  Google Scholar 

  74. A. Nagahisa, W.H. Orme-Johnson, and S.R. Wilson (1984), Silicon-mediated suicide inhibition: An efficient mechanism-base inhibitor of cytochrome P-450 oxidation of cholesterol. J. Amer. Chem. Soc. 106, 1166–1167.

    CAS  Google Scholar 

  75. M.D. Varney, G.P. Marzoni, C.L. Palmer, J.G. Deal, S. Webber, K.M. Welsh, J. Bacquet, C.A. Bartlett, C.A. Morse, C.L.J. Booth, S.M. Hermann, E.F. Howland, R.W. Ward, and J. White (1992), Crystal-structure-based design and synthesis of benz[cd]indole-containing inhibitors of thymidylate synthase. J. Med. Chem. 35, 663–676.

    CAS  Google Scholar 

  76. S.H. Reich, M.A.M. Fuhry, D. Nguyen, M.J. Pino, K.M. Welch, S. Webber, C.A. Janson, S.R. Jordan, D.A. Mathews, W.W. Smith, C.A. Bartlett, C.L.J. Booth, S.M. Herrmann, E.F. Howland, C.A. Morse, R.W. Ward, and J. White (1992), Design and synthesis of novel 6,7-imidazote-trahydroquinoline inhibitors of thymidylate synthese using iterative protein crystal structure analysis. J. Med. Chem. 35, 847–858.

    CAS  Google Scholar 

  77. W.J. Thompson, P.M.D. Fitzgerald, M.K. Holloway, E.A. Emini, P.L. Darke, B.M. McKeever, W.A. Schleif, J.C. Quintero, J.A. Zugay, T.J. Tucker, J.E. Schwering, C.F. Homnick, J. Nunberg, J.P. Springer, and J.R. Huff (1992), Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1′ phenyl substituents: X-ray crystal structure assisted design. J. Med. Chem. 35, 1685–1701.

    CAS  Google Scholar 

  78. B.P. Morgan, D.R. Holland, B.W. Mathews, and P.A. Bartlett (1994), Structure-based design of an inhibitor of the zinc peptidase thermolysin. J. Amer. Chem. Soc. 116, 3251–3260.

    CAS  Google Scholar 

  79. R. Breslow (1958), On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Amer. Chem. Soc. 80, 3719–3726.

    CAS  Google Scholar 

  80. A.A. Gallo and H.Z. Sable (1974), Coenzyme interactions. VIII. 13C-NMR studies of thiamine and related compounds. J. Biol. Chem. 249, 1382–1389.

    CAS  Google Scholar 

  81. F. Jordan and Y.H. Mariam (1978), N 1-Methylthiaminium diiodide. Model study on the effect of a coenzyme bound positive charge on reaction mechanism requiring thiamine pyrophosphate. J. Amer. Chem. Soc. 100, 2534–2541.

    CAS  Google Scholar 

  82. F. White and L.L. Ingraham (1962), Mechanism of thiamine action: A model of 2-acylthiamine. J. Amer. Chem. Soc. 84, 3109–3111.

    CAS  Google Scholar 

  83. T.C. Bruice and S. Benkovic (1966), Bioorganic Mechanisms. Vol. 2, Chap. 8, p. 217. Benjamin, New York.

    Google Scholar 

  84. W.H. Rastetter, J. Adams, J.W. Frost, L.J. Nummy, J.E. Frommer, and K.B. Roberts (1979), On the involvement of lipoic acid in α-keto acid dehydrogenase complexes. J. Amer. Chem. Soc. 101, 2752–2753.

    CAS  Google Scholar 

  85. R. Kluger and D.C. Pike (1979), Chemical synthesis of a proposed enzyme-generated “reactive intermediate analogue” derived from thiamine diphosphate. Self-activation of pyruvate dehydrogenase by conversion of the analogue in its components. J. Amer. Chem. Soc. 101, 6425–6428.

    CAS  Google Scholar 

  86. R. Kluger, K. Marimian, and K. Kitamura (1987), Chiral intermediates in thiamin catalysis. The stereochemical course of the dicarboxylation step in the conversion of pyruvate to acetaldehyde. J. Amer. Chem. Soc. 109, 6368–6371.

    CAS  Google Scholar 

  87. R. Kluger (1987), Thiamine diphosphate: A mechanistic update on enzymic and nonenzymic catalysis of dicarboxylation. Chem. Rev. 87, 863–876.

    CAS  Google Scholar 

  88. J.A. Gutowski and G.E. Lienhard (1976), Transition-state analogs for thiamin pyrophosphate-dependent enzyme. J. Biol. Chem. 251, 2863–2866.

    CAS  Google Scholar 

  89. D. Hilvert and R. Breslow (1984), Functionalized cyclodextrins as holo-enzyme mimics of thiamine-dependent enzyme. Bioorg. Chem. 12, 206–220.

    CAS  Google Scholar 

  90. R. Breslow and E. Kool (1988), A γ-cyclodextrin thiazolium salt holoenzyme mimic for the benzoin condensation. Tetrahedron Lett. 29, 1635–1638.

    CAS  Google Scholar 

  91. J. Moss and M.D. Lane (1971), The biotin-dependent enzymes. Adv. Enzymol. 35, 321–442.

    CAS  Google Scholar 

  92. H.G. Wood and R.E. Barden (1977), Biotin enzymes. Annu. Rev. Biochem. 46, 385–413.

    CAS  Google Scholar 

  93. A.S. Mildvan (1977), Magnetic resonance studies of the conformations of enzyme-bound substrates. Acc. Chem. Res. 10, 246–252.

    CAS  Google Scholar 

  94. R. Kluger and P.D. Adawadkar (1976), A reaction proceeding through intramolecular phosphorylation of a urea. A chemical mechanism for enzymic carboxylation of biotin involving cleavage of ATP. J. Amer. Chem. Soc. 98, 3741–3742.

    CAS  Google Scholar 

  95. W.C. Stallings (1977), The carboxylation of biotin. Substrate recognition and activation by complementary hydrogen bonding. Arch. Biochem. Biophys. 183, 179–199.

    Google Scholar 

  96. H.G. Wood (1976), The reactive group of biotin catalysis by biotin enzymes. Trends. Biochem. Sci. 1, 4–6.

    CAS  Google Scholar 

  97. F. Lynen, J. Knappe, E. Lorch, G. Jütting, and E. Ringelmann (1959), Die biochemische Funktion des Biotins. Angew. Chem. 71, 481–486.

    CAS  Google Scholar 

  98. T.C. Bruice and A.F. Hegarty (1970), Biotin-bound CO2 and the mechanism of enzymatic carboxylation reactions. Proc. Nat. Acad. Sci. USA 65, 805–809.

    CAS  Google Scholar 

  99. M. Caplow and M. Yager (1976), Studies on the mechanism of biotin catalysis. II. J. Amer. Chem. Soc. 89, 4513–4521.

    Google Scholar 

  100. R.B. Guchhait, S.E. Polakis, D. Hollis, C. Fenselau, and M.D. Lane (1974), Acetyl coenzyme A carboxylase system of E. coli. Site of carboxylation of biotin and enzymatic reactivity of 1′-N-(ureido)-carboxybiotin derivatives. J. Biol. Chem. 249, 6646–6656.

    CAS  Google Scholar 

  101. P.A. Whitney and T.G. Cooper (1972), Urea carboxylase and allophanate hydroxylase. Two components of ATP: Urea-lyase in S. cerevisiae. J. Biol. Chem. 247, 1349–1353.

    CAS  Google Scholar 

  102. C.M. Visser and R.M. Kellogg (1977), Mimesis of the biotin mediated carboxyl transfer reactions. Bioorg. Chem. 6, 79–88.

    CAS  Google Scholar 

  103. R. Kluger, P. Davis, and P.D. Adawadkar (1979), Mechanism of urea participation in phosphonate ester hydrolysis. Mechanistic and stereochemical criteria for enzymic formation and reaction of phosphorylated biotin. J. Amer. Chem. Soc. 101, 5995–6000.

    CAS  Google Scholar 

  104. A. Berkessel and R. Breslow (1986), On the structures of some adducts of biotin with electrophiles: Does sulfur transannular interaction with the carbonyl group play a role in the chemistry of biochemistry of biotin? Bioorg. Chem. 14, 299–262.

    Google Scholar 

  105. D. Arigoni, F. Lynen, and J. Rétey (1966), Stereochemie der enzymatischen Carboxylierung von (2R)-2–3H-Propionyl-CoA. Helv. Chim. Acta. 49, 311–316.

    CAS  Google Scholar 

  106. J. Rétey and F. Lynen (1965), Zur biochemischen Funktion des Biotins. IX. Der sterische Verlauf der Carboxylierung von Propionyl-CoA. Biochem. Z. 342, 256–271.

    Google Scholar 

  107. I.A. Rose, E.L. O’Connell, and F. Solomon (1976), Intermolecular tritium transfer in the transcarboxylase reaction. J. Biol. Chem. 251, 902–904.

    CAS  Google Scholar 

  108. J. Stubbe and R.H. Abeles (1979), Biotin carboxylations concerted or not concerted? That is the question! J. Biol. Chem. 252, 8338–8340.

    Google Scholar 

  109. J. Stubbe, S. Fish, and R. Abeles (1980), Are carboxylations involving biotin concerted or nonconcerted? J. Biol. Chem. 255, 236–242.

    CAS  Google Scholar 

  110. S.J. O’Keefe and J.R. Knowles (1986), Enzymatic biotin-mediated carboxylation is not a concerted process. J. Amer. Chem. Soc. 108, 328–329.

    Google Scholar 

  111. J.M. Lehn (1988), Supramolecular chemistry—scope and perspectives: molecules-supermolecules-molecular devices. J. Inclusion Phenomena 6, 351–396.

    CAS  Google Scholar 

  112. J.M. Lehn (1993), Supramolecular chemistry. Science 260, 1762–1763.

    CAS  Google Scholar 

  113. J.M. Lehn (1993), Supramolecular chemistry—molecular information and the design of supramolecular materials. Makromol Chem. Macromol Symp. 69, 1–17.

    CAS  Google Scholar 

  114. I. Amato (1993), Designer solids: haute couture in chemistry. Science 260, 753–755.

    CAS  Google Scholar 

  115. S.A. McDonald, C.G. Willson, and J.M.J. Fréchet (1994), Chemical amplification in high-resolution imaging systems. Acc. Chem. Res. 27,151–165.

    Google Scholar 

  116. J. Van Brunt (1985), Biochips: the ultimate computer. Biotechnology 3, No. 3, 209–215.

    Google Scholar 

  117. A. Laschewsky, H. Ringsdorf, G. Schmidt, and J. Schneider (1987), Self-organization of polymeric lipids with hydrophilic species in side groups and main chains: investigation in momolayers and multilayers. J. Amer. Chem. Soc. 109, 788–796.

    CAS  Google Scholar 

  118. T. Tjivikua, P. Ballester, and J. Rebek, Jr. (1990), A self-replicating system. J. Amer. Chem. Soc. 112, 1249–1250.

    CAS  Google Scholar 

  119. J.I. Hong, Q. Feng, V. Rotello, and J. Rebek, Jr. (1992), Competition, cooperation, and mutation: improving a synthetic replicator by light irradiation. Science 255, 848–850.

    CAS  Google Scholar 

  120. E.A. Wintner, M.M. Conn, and J. Rebek, Jr. (1994), Studies in molecular replication. Acc. Chem. Res. 27, 198–203.

    CAS  Google Scholar 

  121. J.M. Lehn (1990), Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Ed. Engl. 29, 1304–1319.

    Google Scholar 

  122. M. Kotera, J.M. Lehn, and J.P. Vigneron (1994), Self-assembled supramolecular rigid rods. Chem. Commun. 197–199.

    Google Scholar 

  123. CT. Seto and G.M. Whitesides (1991), Self-assembly of hydrogen-bonded 2 + 3 supramolecular complex. J. Amer. Chem. Soc. 113, 712–713.

    CAS  Google Scholar 

  124. C.T. Seto and G.M. Whitesides (1993), Molecular self-assembly through hydrogen bonding: supramolecular aggregates based on the cyanuric acid-melamine lattice. J. Amer. Chem. Soc. 115, 905–916.

    CAS  Google Scholar 

  125. M. Inouye, K. Hashimoto, and K. Isagawa (1994), Nondestructive detection of acetylcholine in protic media: artificial-signaling acetylcholine receptors. J. Amer. Chem. Soc. 116, 5517–5518.

    CAS  Google Scholar 

  126. J. Moore and S. Lee (1994), Crafting molecular based solids. Chem. & Ind. 556–560.

    Google Scholar 

  127. Y. Zhang and N.C. Seeman (1994), Construction of a DNA-truncated octahedron. J. Amer. Chem. Soc. 116, 1661–1669.

    CAS  Google Scholar 

  128. D.M. Rudkevich, Z. Brzozka, M. Palys, H.C. Visser, W. Verboom, and D.N. Reinhoult (1994), A difunctional receptor for the simultaneous com-plexation of anions and cations; recognition of KH2PO4. Angew. Chem. Int. Ed. Engl. 33, 467–468.

    Google Scholar 

  129. S.H. Kawai, S.L. Gilat, and J.M. Lehn (1994), A dual-mode optical-electrical molecular switching device. Chem. Commun. 1011–1013.

    Google Scholar 

  130. C.M. Drain, R. Fischer, E.G. Nolen, and J.M. Lehn (1993), Self-assembly of a bisporphyrin supramolecular cage induced by molecular recognition between complementary hydrogen bonding sites. Chem. Commun. 243–245.

    Google Scholar 

  131. U. Koert, M.M. Harding, and J.M. Lehn (1990), DNH deoxyribonucleo-helicates: self-assembly of oligonucleosidic double-helical metal complexes. Nature 346, 339–342.

    CAS  Google Scholar 

  132. J.M. Lehn and A. Rigault (1988), Helicates: tetra- and pentanuclear double helix complexes of Cu(I) and poly(bipyridine) strands. Angew. Chem. Int. Ed. Engl. 27, 1095–1097.

    Google Scholar 

  133. J.M. Lehn (1994), Perspectives in supramolecular chemistry: From molecular recognition towards self-organization. Pure & Appl. Chem. 66, 1961–1966.

    CAS  Google Scholar 

  134. D. Bradley (1993), Will future computers be all wet? Science 259, 890–892.

    Google Scholar 

  135. P.R. Ashton, R. Battardini, W. Balzani, M.T. Gandolfi, D.J.F. Marquis, L. Pérez-Garcia, L. Prodi, J.F. Stoddart, and M. Venturi (1994), The self-assembly of controllable [2]catenanes. Chem. Commun. 177–180.

    Google Scholar 

  136. D. Bradley (1991), How to make a molecular shuttle. New Scientist July 27, 20.

    Google Scholar 

  137. G. Schill (1971), Catenanes, Rotaxanes, and Knots. Academic Press, New York.

    Google Scholar 

  138. P.R. Ashton, D. Philp, N. Spenser, J.F. Stoddart, and D.J. Williams (1994), A self-organized layered superstructure of arrayed [2]pseudorotaxane. Chem. Commun. 181–184.

    Google Scholar 

  139. J.F. Stoddart (1993), Molecular recognition and self-assembly. An. Quim. 89, 51–56.

    CAS  Google Scholar 

  140. J.L. Brédas (1994), Molecular geometry and nonlinear optics. Science 263, 487–489.

    Google Scholar 

  141. D.B. Amabilino, P.R. Asthon, A.S. Reder, N. Spencer, and J.F. Stoddart (1994), The two-step self-assembly of [4]- and [5]catenanes. Angew. Chem. Int. Ed. Engl. 33, 433–436.

    Google Scholar 

  142. D.B. Amabilino, P.R. Asthon, A.S. Reder, and J.F. Stoddart (1994), Olympiadane. Angew. Chem. Int. Ed. Engl. 33, 1286–1290.

    Google Scholar 

  143. M.J. Gunter, D.C.R. Hockless, M.R. Johnston, B.W. Skelton, and A.H. White (1994), Self-assembling porphyrin [2]-catenanes. J. Amer. Chem. Soc. 116, 4810–4823.

    CAS  Google Scholar 

  144. W. Worthy (1988), New families of multibranched macromolecules synthesized. Chem. & Eng. News Feb. 22, 19–21.

    Google Scholar 

  145. H.B. Mekelburger, W. Jaworek, and F. Vögtle (1992), Dendrimers, arborols, amd cascade molecules: breakthrough into generations of new materials. Angew. Chem. Int. Ed. Engl. 31, 1571–1576.

    Google Scholar 

  146. C.J. Hawker and J.M.J. Freenet (1990), Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Amer. Chem. Soc. 112, 7638–7647.

    CAS  Google Scholar 

  147. T.M. Miller and T.X. Neeman (1990), Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzene. Chem. Mater. 2, 346–349.

    CAS  Google Scholar 

  148. J. Issberner, R. Moors, and F. Vögtle (1994), Dendrimers: From generations and functional groups to functions. Angew. Chem. Int. Ed. Engl. 33, 2413–2420.

    Google Scholar 

  149. D.A. Tomalia (1993), Starburst™/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry set. Aldrichimica Acta 26, No. 4, 91–101.

    CAS  Google Scholar 

  150. D. Seebach, J.M. Lapierre, K. Skobridis, and G. Greiveldinger (1994), Chiral dendrimers from tris(hydroxymethyl)-methane derivatives. Angew. Chem. Int. Ed. Engl. 33, 440–442.

    Google Scholar 

  151. PJ. Dandliker, F. Diederich, M. Gross, C.B. Knobler, A. Louati, and E.M. Sanford (1994), Dendritic porphyrins: modulating redox potentials of electroactive chromophores with pendant multifunctionality. Angew. Chem. Int. Ed. Engl. 33, 1739–1742.

    Google Scholar 

  152. P.R. Dvornic and D.A. Tomalia (1994), A family tree for polymers. Chem. Britain 641–645.

    Google Scholar 

  153. S. Mann (1994), Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365, 499–505.

    Google Scholar 

  154. L. Addadi and S. Weiner (1992), Control and design principles in biological mineralization. Angew. Chem. Int. Ed. Engl. 31, 153–169.

    Google Scholar 

  155. R.F. Service (1994), Self-assembly comes together. Science 265, 316–318.

    CAS  Google Scholar 

  156. K. Aoki, L.C. Brousseau, and T.E. Mallouk (1993), Metal phosphonate-based quartz crystal microbalance sensors for amines and amonia. Sensors & Actuators B B14, 703–704.

    Google Scholar 

  157. H.C. Yang, K. Aoki, H.G. Hong, D.D. Sackett, M.F. Arendt, S.L. Yau, C.M. Bell, and T.E. Mallouk (1993), Growth and characterization of metal (II) alkanebisphosphonate multilayer thin film on gold surfaces. J. Amer. Chem. Soc. 115, 11855–11862.

    CAS  Google Scholar 

  158. F.M. Menger and S.J. Lee (1994), Long organic fibers obtained by non-covalent synthesis. J. Amer. Chem. Soc. 116, 5987–6988.

    CAS  Google Scholar 

  159. J. Emsley (1994), Tangled tale of a self-organizing fiber. New Scientist Aug. 6, 17.

    Google Scholar 

  160. M. Simard, D. Su, and J.D. Wuest (1991), Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Amer. Chem. Soc. 113, 4696–4698.

    CAS  Google Scholar 

  161. P. Baxter, J.M. Lehn, A. DeCian, and J. Fischer (1993), Multicom-ponent self-assembly: spontaneous formation of a cylindrical complex from five ligands and six metal ions. Angew. Chem. Int. Ed. Engl. 32, 69–71.

    Google Scholar 

  162. P.N.W. Baxter, J.M. Lehn, J. Fisher, and M.T. Youinou (1994), Self-assembly and structure of 3 × 3 inorganic grid from nine silver ions and six ligand components. Angew. Chem. Int. Ed. Engl. 33, 2284–2287.

    Google Scholar 

  163. F. Diederich and Y. Rubin (1992), Synthetic approaches toward molecular and polymeric carbon ätiotropes. Angew. Chem. Int. Ed. Engl. 31, 1101–1123.

    Google Scholar 

  164. F. Diederich (1994), Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207.

    CAS  Google Scholar 

  165. U.H.F. Bunz (1994), Polyynes—fascinating monomers for the construction of carbon networks. Angew. Chem. Int. Ed. Engl. 33, 1073–1076.

    Google Scholar 

  166. J. Anthony, C. Boudon, F. Diederich, J.P. Gisselbrecht, V. Grämlich, M. Gross, M. Hobi, and P. Seiler (1994), Stable conjugated carbon rods with a persilylethynylated polytriacetylene backbone. Angew. Chem. Int. Ed. Engl. 33, 763–766.

    Google Scholar 

  167. H.L. Anderson, R. Faust, Y. Rubin, and F. Diederich (1994), Fullerene-acetylene hybrids: on the way to synthetic molecular carbon alio tropes. Angew. Chem. Int. Ed. Engl. 33, 1366–1368.

    Google Scholar 

  168. R. Baum (1993), Subtle tensions in organic chemistry emerge at conference. Chem. Eng. News, Nov. 29, 50–51.

    Google Scholar 

  169. A.P. DeSilva and C.P. McCoy (1994), Switchable photonic molecules in information technology. Chem. & Ind. 992–996.

    Google Scholar 

  170. T.J. Marks and M.A. Ratner (1995), Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angew. Chem. Int. Ed. Engl. 34, 155–173.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dugas, H. (1996). Coenzyme Chemistry. In: Bioorganic Chemistry. Springer Advanced Texts in Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2426-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2426-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98910-5

  • Online ISBN: 978-1-4612-2426-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics