Coenzyme Chemistry

  • Hermann Dugas
Part of the Springer Advanced Texts in Chemistry book series (SATC)

Abstract

Cellular metabolism is under enzymatic control and often the enzymes involved need a substance or cofactor in order to express their catalytic activity. In these systems the protein portion of the enzyme is designated the apoenzyme and is usually catalytically inactive. The cofactor is a metal ion or a nonprotein organic substance. Many enzymes even require both cofactors. A firmly bound cofactor is called a prosthetic group. If, however, the organic cofactor is brought into play during the catalytic mechanism, it is referred to as a coenzyme. The complex formed by the addition of the coenzyme to the apoenzyme is referred to as a holoenzyme (or enzyme, for short).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 574.
    A.E. Metzler (1977), Biochemistry, The Chemical Reactions of Living Cells, Chap. 8. Academic Press, New York.Google Scholar
  2. 575.
    B.O. Söderberg, O. Tapia, and C.I. Bränden (1976), Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 102, 27–59.Google Scholar
  3. 576.
    G. DiSabato (1970), Adducts of diphosphopyridine nucleotide and carbonyl compounds. Biochemistry 9, 4594–4600.Google Scholar
  4. 577.
    D.J. Creighton and D.S. Sigman (1971), A model for alcohol dehydrogenase. The zinc ion catalyzed reduction of 1,10-phenanthroline-2-car-boxaldehyde by N-propyl-l, 4-dihydronicotinamide. J. Amer. Chem. Soc. 93, 6314–6316.Google Scholar
  5. 578.
    U. Grau, H. Kapmeyer, and W.E. Trommer (1978), Combined coenzyme-substrate analogues of various dehydrogenases. Synthesis of (3S)- and (3R)-5-(3-carboxy-3-hydroxypropyl) nicotinamide adenine dinucleotide and their interaction with (S)- and (R)-lactate-specific dehydrogenases. Biochemistry 17, 4621–4626.Google Scholar
  6. 579.
    J.T. van Bergen and R.M. Kellogg (1977), A crown ether NAD(P)H mimic. Complexation with cations and enhanced hydride donating ability toward sulfonium salts. J. Amer. Chem. Soc. 99, 3882–3884.Google Scholar
  7. 580.
    R.M. Kellogg (1984), Chiral macrocycles as reagents and catalysts. Angew. Chem. Int. Ed. Engl. 23, 782–794.Google Scholar
  8. 581.
    A.I. Meyers and J.D. Brown (1987), The first nonenzymatic stereospecific intramolecular reduction by an NADH mimic containing a covalently bound carbonyl moiety. J. Amer. Chem. Soc. 109, 3155–5135.Google Scholar
  9. 582.
    J.P. Behr and J.-M. Lehn (1978), Enhanced rates of dihydropyridine to pyridinium hydrogen transfer in complexes of an active macrocyclic receptor molecule. Chem. Comm. 143–146.Google Scholar
  10. 583.
    M. Kojima, F. Toda, and K. Hattori (1981), β-Cyclodextrin-nicotinamide as a model for NADH dependent enzymes. J. Chem. Soc. Perkin I, 1647–1651.Google Scholar
  11. 584.
    G.A. Hamilton (1971). In: Progress in Bioorganic Chemistry (E.T. Kaiser and T.J. Kézdy, Eds.), Vol. 1, pp. 83–137. Wiley-Interscience, New York.Google Scholar
  12. 585.
    C.J. Suckling and H.C.S. Wood (1979), Should organic chemistry meddle in biochemistry? Chem. Britain 5, 243–248.Google Scholar
  13. 586.
    A.J. Irwin and J.B. Jones (1976), Stereoselective horse liver alcohol dehydrogenase catalyzed oxidoreductions of some bicyclic[2.2.1] and [3.2.1] ketones and alcohols. J. Amer. Chem. Soc. 98, 8476–8482.Google Scholar
  14. 587.
    A.J. Irwin and J.B. Jones (1977), Regiospecific and enantioselective horse liver alcohol dehydrogenase catalyzed oxidations of some hydroxycyclo-pentanes. J. Amer. Chem. Soc. 99, 1625–1630.Google Scholar
  15. 588.
    J.B. Jones and J.F. Beck (1976), Application of Biochemical Systems in Organic Chemistry. In: Techniques of Chemistry Series (J.B. Jones, C.J. Sih, and D. Perlman, Eds.), Part I, pp. 107–401. Wiley, New York.Google Scholar
  16. 589.
    V. Prelog (1964), Specification of the stereochemistry of some oxidoreductase by diamond lattice sections. Pure & Appl Chem. 9, 119–130.Google Scholar
  17. 590.
    J.B. Jones and J.J. Jakovac (1982), A new cubic-space section model for predicting the specificity of horse liver alcohol dehydrogenase-catalyzed oxidoreductions. Can. J. Chem. 60, 19–28.Google Scholar
  18. 591.
    J.B. Jones (1993), Probing the specificity of synthetically useful enzymes, Aldrichimica Acta 26, No. 4, 105–112.Google Scholar
  19. 592.
    C. Walsh (1980), Flavin coenzymes; At the crossroads of biological redox chemistry. Acc. Chem. Res. 13, 148–155.Google Scholar
  20. 593.
    D.J. Creighton, J. Hajdu, G. Mooser, and D.S. Sigman (1973), Model dehydrogenase reactions. Reduction of N-methylacridinium ion by reduced nicotinamide adenine dinucleotide and its derivatives. J. Amer. Chem. Soc. 95, 6855–6867.Google Scholar
  21. 594.
    P. Hemmerich, V. Massey, and G. Weber (1967), Photo-induced benzyl substitution of flavins by phenylacetate: A possible model for flavoprotein catalysis. Nature 213, 728–730.Google Scholar
  22. 595.
    M. Brüstlein and T.C. Bruice (1972), Demonstration of a direct hydrogen transfer between NADH and a deazaflavin. J. Amer. Chem. Soc. 94, 6548–6549.Google Scholar
  23. 596.
    J. Fisher and C. Walsh (1974), Enzymatic reduction of 5-deazariboflavine from reduced nicotinamide adenine dinucleotide by direct hydrogen transfer. J. Amer. Chem. Soc. 96, 4345–4346.Google Scholar
  24. 597.
    D. Eirich, G. Vogels, and R. Wolfe (1978), Proposed structure of coenzyme F420 from Methanobacterium. Biochemistry 17, 4583–4593.Google Scholar
  25. 598.
    J.M. Sayer, P. Conlon, J. Hupp, J. Fancher, R. Bélanger, and E.J. White (1979), Reduction of 1,3-dimethyl-5-(p-nitrophenylimino) barbituric acid by thiols. A high-velocity flavin model reaction with an isolable intermediate. J. Amer. Chem. Soc. 101, 1890–1893.Google Scholar
  26. 599.
    S. Shinkai, K. Kameoka, K. Ueda, and O. Manabe (1987), “Remote control” of flavin reactivities by an intramolecular crown ether serving as a metal-binding site. J. Amer. Chem. Soc. 109, 923–924.Google Scholar
  27. 600.
    S. Shinkai, K. Kameoka, K. Ueda, O. Manabe, and M. Onishi (1987), “Remote control” of flavin reactivities by an intramolecular crown ether serving as a metal-binding site: Relationship between spectral properties and dissociation of the 8-sulfonamide group. Bioorg. Chem. 15, 269–282.Google Scholar
  28. 601.
    J. Takeda, S. Ohta, and M. Hirobe (1985), Rate-enhancing effect of intramolecular linkage of flavin-porphyrin on reduction by 1,4-dihydropyridine. Tetrahedron Lett. 26, 4509–4512.Google Scholar
  29. 602.
    J. Takeda, S. Ohta, and M. Hirobe (1986), Synthesis and properties of novel flavin-linked porphyrin. Heterocycles 24, 269.Google Scholar
  30. 603.
    W.H. Rastetter, T.R. Gadek, J.P. Tane, and J.W. Frost (1979), Oxidations and oxygen transfer effected by a flavin N(5)-oxide. A model for flavin-dependent monooxygenases. J. Amer. Chem. Soc. 101, 2228–2231.Google Scholar
  31. 604.
    H.W. Orf and D. Dolphin (1974), Oxaziridines as possible intermediates in flavin monooxygenases. Proc. Nat. Acad. Sci. USA 71, 2646–2650.Google Scholar
  32. 605.
    G. Eberlein and T.C. Bruice (1982), One- and two-electron reduction of oxygen by 1,5-dihydroflavins. J. Amer. Chem. Soc. 104, 1449–1452.Google Scholar
  33. 606.
    D. Vargo and M.S. Jörns (1979), Synthesis of a 4a,5-epoxy-5-deazaflavin derivative. J. Amer. Chem. Soc. 101, 7623–7626.Google Scholar
  34. 607.
    D.M. Jerina, J.W. Daly, B. Witkop, S. Zaltzman-Nirenberg, and S. Udenfriend (1969), 1,2-Naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. Biochemistry 9, 147–156.Google Scholar
  35. 608.
    G. Guroff, J.W. Daly, D.M. Jerina, J. Rensen, B. Witkop, and S. Udenfriend (1967), Hydroxylation-induced migration: The NIH shift. Science 157, 1524–1530.Google Scholar
  36. 609.
    J.L. Fox (1978), Chemists attack complex organic mechanisms. Chem. Eng. News May 22, pp. 28–30.Google Scholar
  37. 610.
    W. Adam, A. Alzérreca, J.E. Liu, and F. Yany (1977), α-Peroxylactones via dehydrative cyclization of α-hydroperoxy acids. J. Amer. Chem. Soc. 99, 5768–5773.Google Scholar
  38. 611.
    C. Kemal and T.C. Bruice (1976), Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: Preliminary studies of a model for bacterial luciferase. Proc. Nat. Acad. Sci. USA 73, 995–999.Google Scholar
  39. 612.
    S.P. Schmidt and G.B. Schuster (1978), Dioxetanone chemiluminescence by the chemically initiated electron exchange pathway. Efficient generation of excited singlet states. J. Amer. Chem. Soc. 100, 1966–1968.Google Scholar
  40. 613.
    B.P. Branchaud and C.T. Walsh (1985), Functional group diversity in enzymatic oxygenation reactions catalyzed by bacterial flavin-containing cyclohexanone oxygenase. J. Amer. Chem. Soc. 107, 2153–2161.Google Scholar
  41. 614.
    J.N. Lowe and L.L. Ingraham (1974), An Introduction to Biochemical Reactions Mechanisms, Chap. 3. Foundation of Molecular Biology Series. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  42. 615.
    O.A. Gansow and R.H. Holm (1969), A proton resonance investigation of equilibra, solute structures, and transamination in the aqueous systems pyridoxaminepyruvate-zinc(II) and aluminium(III). J. Amer. Chem. Soc. 91, 5984–5993.Google Scholar
  43. 616.
    M. Blum and J.W. Thanassi (1977), Metal ion induced reaction specific in vitamin B6 model systems. Bioorg. Chem. 6, 31–41.Google Scholar
  44. 617.
    C. Walsh (1978), Chemical approaches to the study of enzymes catalyzing redox transformations. Annu. Rev. Biochem. 47, 881–931.Google Scholar
  45. 618.
    B. Belleau and J. Burba (1960), The stereochemistry of the enzymic decarboxylation of amino acids. J. Amer. Chem. Soc. 82, 5751–5752.Google Scholar
  46. 619.
    H.C. Dunathan L. Davis, P.G. Kury, and M. Kaplan (1968), The stereochemistry of enzymatic transamination. Biochemistry 7, 4532–4536.Google Scholar
  47. 620.
    H.C. Dunathan and J.G. Voet (1974), Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various functions from a common ancestor. Proc. Nat. Acad. Sci. USA 71, 3888–3891.Google Scholar
  48. 621.
    J.N. Roitenan and D.J. Cram (1971), Electrophilic substitution at saturated carbon. XLV. Dissection of mechanisms of base-catalyzed hydrogen-deuterium exchange of carbon acids into inversion, isoinversion, and racemization pathways. J. Amer. Chem. Soc. 90, 2225–2230.Google Scholar
  49. 622.
    J.N. Roitenan and D.J. Cram (1971), Electrophilic substitution at saturated carbon. XLVI. Crown ethers’ ability to alter role of metal cations in control of stereochemical fate of carbanions. J. Amer. Chem. Soc. 90, 2231–2241.Google Scholar
  50. 623.
    D.J. Cram, W.T. Ford, and L. Gosser (1968), Electrophilic substitution and saturated carbon. XXXVIII. Survey of substituent effects on stereochemical fate of fluorenyl carbanions. J. Amer. Chem. Soc. 90, 2598–2606.Google Scholar
  51. 624.
    M.D. Broadhurst and D.J. Cram (1974), A model for the proton transfer stages of the biological transaminations and isotopic exchange reactions of amino acids. J. Amer. Chem. Soc. 96, 581–583.Google Scholar
  52. 625.
    D.A. Jaeger, M.D. Broadhurst, and D.J. Cram (1979), Electrophilic substitution at saturated carbon. 52. A model for the proton transfer steps of biological transamination and the effect of a 4-pyridyl group on the base-catalyzed racemization of a carbon acid. J. Amer. Chem. Soc. 101, 717–732.Google Scholar
  53. 626.
    R. Breslow, A.W. Czarnik, M. Lauer, R. Leppkes, J. Winkler, and S. Zimmerman (1986), Mimics of transaminase enzymes. J. Am. Chem. Soc. 108, 1969–1979 and references therein.Google Scholar
  54. 627.
    I. Tabushi, Y. Kuroda, M. Yamada, H. Higashima, and R. Breslow (1985), A-(modified B6)-B-[ω-amino(ethylamino)]β-cyclodextrin as an artificial B6 enzyme for chiral amino transfer reaction. J. Amer. Chem. Soc. 107, 5545–5546.Google Scholar
  55. 628.
    S.E. Brown, J.H. Coates, C.J. Easton, S.J. van Eyk, S.F. Lincoln, B.L. May, M.A. Stile, C.B. Whalland, and M.L. Williams (1994), Tryptophan anion complexes of β-cyclodextrin (cyclomaltaheptaose), an aminopro-pylamino-β-cyclodextrin and its enantioselective nickel(II) complex. Chem. Commun. 47.Google Scholar
  56. 629.
    S.C. Zimmerman and R. Breslow (1986), Asymmetric synthesis of amino acids by pyridoxamine enzyme analogues utilizing base-acid catalysis. J. Amer. Chem. Soc. 106, 1490–1491.Google Scholar
  57. 630.
    B.R. Baker (1967), Design of Active-Site-Directed Irreversible Enzyme Inhibitors. J. Wiley & Sons, New York.Google Scholar
  58. 631.
    R.H. Abeles and A.L. Maycock (1976), Suicide enzyme inactivators. Acc. Chem. Res. 9, 313–319.Google Scholar
  59. 632.
    G. Schoellmann and E. Shaw (1963), Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry 2, 252–255.Google Scholar
  60. 633.
    V. Chowdhry and F.H. Westheimer (1979), Photoaffinity labeling of biological systems. Annu. Rev. Biochem. 48, 293–325.Google Scholar
  61. 634.
    M.P. Goeldner, C.G. Hirth, B. Kieffer, and G. Ourisson (1982), Photo-suicide inhibition—a step towards specific photoaffinity labeling. Trends in Biochem. Sci. 310–313.Google Scholar
  62. 635.
    L. Stryer (1978), Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.Google Scholar
  63. 636.
    R.R. Rando (1975), Mechanisms of action of naturally occurring irreversible enzyme inhibitors. Acc. Chem. Res. 8, 281–288.Google Scholar
  64. 637.
    R.R. Rando (1974), Chemistry and enzymology of kcat inhibitors. Science 185, 320–324.Google Scholar
  65. 638.
    P. Fasella and R. John (1969), Substrate analogues as specific inhibitors of pyridoxal-dependent enzymes. Proc. 4th Int. Congr. Pharmacol. 5, 184–186.Google Scholar
  66. 639.
    Y. Morino and M. Okamoto (1973), Labeling of the active site of cytoplasmic aspartate amino transferase by β-chloro-L-alanine. Biochem. Biophys. Res. Commun. 50, 1061–1067.Google Scholar
  67. 640.
    M.J. Jung and B.W. Metcalf (1975), Catalytic inhibition of γ-aminobutyric acid α-ketoglutarate transaminase of bacterial origin by 4-aminohex-5-ynoic acid, a substrate analog. Biochem. Biophys. Res. Commun. 67, 301–306.Google Scholar
  68. 641.
    R.R. Rando and J. de Mairena (1974), Propargyl amine-induced irreversible inhibition of non-flavin-linked amine oxidases. Biochem. Pharmacol 23, 463–466.Google Scholar
  69. 642.
    D. Kuo and R.R. Rando (1981), Irreversible inhibition of glutamate dicar-boxylase by α-(fluoromethyl)glutamic acid. Biochemistry 20, 506–511.Google Scholar
  70. 643.
    C.T. Walsh (1983), Suicide substrates: Mechanism-base enzyme inactivators with therapeutic potential. Trends in Biochem. Sci. 254–257.Google Scholar
  71. 644.
    P.K. Chakravarty, G.A. Krafft, and J.A. Katzenellenbogen (1982), Haloenol lactone: Enzyme-activated irreversible inactivators for serine proteases. J. Biol. Chem. 257, 610–612.Google Scholar
  72. 645.
    R.H. Abeles (1983), Suicide enzyme inactivations. Chem. & Eng. News, Sept. 19, 48–56.Google Scholar
  73. 646.
    J.L. Adams and B.W. Metcalf (1984), The synthesis of a 3-diazobycyclo-[2.2.1]heptan-2-one inhibitor of thromboxane A2 synthetase. Tetrahedron Lett. 25, 919–922.Google Scholar
  74. 647.
    A. Nagahisa, W.H. Orme-Johnson, and S.R. Wilson (1984), Silicon-mediated suicide inhibition: An efficient mechanism-base inhibitor of cytochrome P-450 oxidation of cholesterol. J. Amer. Chem. Soc. 106, 1166–1167.Google Scholar
  75. 648.
    M.D. Varney, G.P. Marzoni, C.L. Palmer, J.G. Deal, S. Webber, K.M. Welsh, J. Bacquet, C.A. Bartlett, C.A. Morse, C.L.J. Booth, S.M. Hermann, E.F. Howland, R.W. Ward, and J. White (1992), Crystal-structure-based design and synthesis of benz[cd]indole-containing inhibitors of thymidylate synthase. J. Med. Chem. 35, 663–676.Google Scholar
  76. 649.
    S.H. Reich, M.A.M. Fuhry, D. Nguyen, M.J. Pino, K.M. Welch, S. Webber, C.A. Janson, S.R. Jordan, D.A. Mathews, W.W. Smith, C.A. Bartlett, C.L.J. Booth, S.M. Herrmann, E.F. Howland, C.A. Morse, R.W. Ward, and J. White (1992), Design and synthesis of novel 6,7-imidazote-trahydroquinoline inhibitors of thymidylate synthese using iterative protein crystal structure analysis. J. Med. Chem. 35, 847–858.Google Scholar
  77. 650.
    W.J. Thompson, P.M.D. Fitzgerald, M.K. Holloway, E.A. Emini, P.L. Darke, B.M. McKeever, W.A. Schleif, J.C. Quintero, J.A. Zugay, T.J. Tucker, J.E. Schwering, C.F. Homnick, J. Nunberg, J.P. Springer, and J.R. Huff (1992), Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1′ phenyl substituents: X-ray crystal structure assisted design. J. Med. Chem. 35, 1685–1701.Google Scholar
  78. 651.
    B.P. Morgan, D.R. Holland, B.W. Mathews, and P.A. Bartlett (1994), Structure-based design of an inhibitor of the zinc peptidase thermolysin. J. Amer. Chem. Soc. 116, 3251–3260.Google Scholar
  79. 652.
    R. Breslow (1958), On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Amer. Chem. Soc. 80, 3719–3726.Google Scholar
  80. 653.
    A.A. Gallo and H.Z. Sable (1974), Coenzyme interactions. VIII. 13C-NMR studies of thiamine and related compounds. J. Biol. Chem. 249, 1382–1389.Google Scholar
  81. 654.
    F. Jordan and Y.H. Mariam (1978), N 1-Methylthiaminium diiodide. Model study on the effect of a coenzyme bound positive charge on reaction mechanism requiring thiamine pyrophosphate. J. Amer. Chem. Soc. 100, 2534–2541.Google Scholar
  82. 655.
    F. White and L.L. Ingraham (1962), Mechanism of thiamine action: A model of 2-acylthiamine. J. Amer. Chem. Soc. 84, 3109–3111.Google Scholar
  83. 656.
    T.C. Bruice and S. Benkovic (1966), Bioorganic Mechanisms. Vol. 2, Chap. 8, p. 217. Benjamin, New York.Google Scholar
  84. 657.
    W.H. Rastetter, J. Adams, J.W. Frost, L.J. Nummy, J.E. Frommer, and K.B. Roberts (1979), On the involvement of lipoic acid in α-keto acid dehydrogenase complexes. J. Amer. Chem. Soc. 101, 2752–2753.Google Scholar
  85. 658.
    R. Kluger and D.C. Pike (1979), Chemical synthesis of a proposed enzyme-generated “reactive intermediate analogue” derived from thiamine diphosphate. Self-activation of pyruvate dehydrogenase by conversion of the analogue in its components. J. Amer. Chem. Soc. 101, 6425–6428.Google Scholar
  86. 659.
    R. Kluger, K. Marimian, and K. Kitamura (1987), Chiral intermediates in thiamin catalysis. The stereochemical course of the dicarboxylation step in the conversion of pyruvate to acetaldehyde. J. Amer. Chem. Soc. 109, 6368–6371.Google Scholar
  87. 660.
    R. Kluger (1987), Thiamine diphosphate: A mechanistic update on enzymic and nonenzymic catalysis of dicarboxylation. Chem. Rev. 87, 863–876.Google Scholar
  88. 661.
    J.A. Gutowski and G.E. Lienhard (1976), Transition-state analogs for thiamin pyrophosphate-dependent enzyme. J. Biol. Chem. 251, 2863–2866.Google Scholar
  89. 662.(a).
    D. Hilvert and R. Breslow (1984), Functionalized cyclodextrins as holo-enzyme mimics of thiamine-dependent enzyme. Bioorg. Chem. 12, 206–220.Google Scholar
  90. 662.(b).
    R. Breslow and E. Kool (1988), A γ-cyclodextrin thiazolium salt holoenzyme mimic for the benzoin condensation. Tetrahedron Lett. 29, 1635–1638.Google Scholar
  91. 663.
    J. Moss and M.D. Lane (1971), The biotin-dependent enzymes. Adv. Enzymol. 35, 321–442.Google Scholar
  92. 664.
    H.G. Wood and R.E. Barden (1977), Biotin enzymes. Annu. Rev. Biochem. 46, 385–413.Google Scholar
  93. 665.
    A.S. Mildvan (1977), Magnetic resonance studies of the conformations of enzyme-bound substrates. Acc. Chem. Res. 10, 246–252.Google Scholar
  94. 666.
    R. Kluger and P.D. Adawadkar (1976), A reaction proceeding through intramolecular phosphorylation of a urea. A chemical mechanism for enzymic carboxylation of biotin involving cleavage of ATP. J. Amer. Chem. Soc. 98, 3741–3742.Google Scholar
  95. 667.
    W.C. Stallings (1977), The carboxylation of biotin. Substrate recognition and activation by complementary hydrogen bonding. Arch. Biochem. Biophys. 183, 179–199.Google Scholar
  96. 668.
    H.G. Wood (1976), The reactive group of biotin catalysis by biotin enzymes. Trends. Biochem. Sci. 1, 4–6.Google Scholar
  97. 669.
    F. Lynen, J. Knappe, E. Lorch, G. Jütting, and E. Ringelmann (1959), Die biochemische Funktion des Biotins. Angew. Chem. 71, 481–486.Google Scholar
  98. 670.
    T.C. Bruice and A.F. Hegarty (1970), Biotin-bound CO2 and the mechanism of enzymatic carboxylation reactions. Proc. Nat. Acad. Sci. USA 65, 805–809.Google Scholar
  99. 671.
    M. Caplow and M. Yager (1976), Studies on the mechanism of biotin catalysis. II. J. Amer. Chem. Soc. 89, 4513–4521.Google Scholar
  100. 672.
    R.B. Guchhait, S.E. Polakis, D. Hollis, C. Fenselau, and M.D. Lane (1974), Acetyl coenzyme A carboxylase system of E. coli. Site of carboxylation of biotin and enzymatic reactivity of 1′-N-(ureido)-carboxybiotin derivatives. J. Biol. Chem. 249, 6646–6656.Google Scholar
  101. 673.
    P.A. Whitney and T.G. Cooper (1972), Urea carboxylase and allophanate hydroxylase. Two components of ATP: Urea-lyase in S. cerevisiae. J. Biol. Chem. 247, 1349–1353.Google Scholar
  102. 674.
    C.M. Visser and R.M. Kellogg (1977), Mimesis of the biotin mediated carboxyl transfer reactions. Bioorg. Chem. 6, 79–88.Google Scholar
  103. 675.
    R. Kluger, P. Davis, and P.D. Adawadkar (1979), Mechanism of urea participation in phosphonate ester hydrolysis. Mechanistic and stereochemical criteria for enzymic formation and reaction of phosphorylated biotin. J. Amer. Chem. Soc. 101, 5995–6000.Google Scholar
  104. 676.
    A. Berkessel and R. Breslow (1986), On the structures of some adducts of biotin with electrophiles: Does sulfur transannular interaction with the carbonyl group play a role in the chemistry of biochemistry of biotin? Bioorg. Chem. 14, 299–262.Google Scholar
  105. 677.
    D. Arigoni, F. Lynen, and J. Rétey (1966), Stereochemie der enzymatischen Carboxylierung von (2R)-2–3H-Propionyl-CoA. Helv. Chim. Acta. 49, 311–316.Google Scholar
  106. 678.
    J. Rétey and F. Lynen (1965), Zur biochemischen Funktion des Biotins. IX. Der sterische Verlauf der Carboxylierung von Propionyl-CoA. Biochem. Z. 342, 256–271.Google Scholar
  107. 679.
    I.A. Rose, E.L. O’Connell, and F. Solomon (1976), Intermolecular tritium transfer in the transcarboxylase reaction. J. Biol. Chem. 251, 902–904.Google Scholar
  108. 680.
    J. Stubbe and R.H. Abeles (1979), Biotin carboxylations concerted or not concerted? That is the question! J. Biol. Chem. 252, 8338–8340.Google Scholar
  109. 681.
    J. Stubbe, S. Fish, and R. Abeles (1980), Are carboxylations involving biotin concerted or nonconcerted? J. Biol. Chem. 255, 236–242.Google Scholar
  110. 682.
    S.J. O’Keefe and J.R. Knowles (1986), Enzymatic biotin-mediated carboxylation is not a concerted process. J. Amer. Chem. Soc. 108, 328–329.Google Scholar
  111. 683.
    J.M. Lehn (1988), Supramolecular chemistry—scope and perspectives: molecules-supermolecules-molecular devices. J. Inclusion Phenomena 6, 351–396.Google Scholar
  112. 684.
    J.M. Lehn (1993), Supramolecular chemistry. Science 260, 1762–1763.Google Scholar
  113. 685.
    J.M. Lehn (1993), Supramolecular chemistry—molecular information and the design of supramolecular materials. Makromol Chem. Macromol Symp. 69, 1–17.Google Scholar
  114. 686.
    I. Amato (1993), Designer solids: haute couture in chemistry. Science 260, 753–755.Google Scholar
  115. 687.
    S.A. McDonald, C.G. Willson, and J.M.J. Fréchet (1994), Chemical amplification in high-resolution imaging systems. Acc. Chem. Res. 27,151–165.Google Scholar
  116. 688.
    J. Van Brunt (1985), Biochips: the ultimate computer. Biotechnology 3, No. 3, 209–215.Google Scholar
  117. 689.
    A. Laschewsky, H. Ringsdorf, G. Schmidt, and J. Schneider (1987), Self-organization of polymeric lipids with hydrophilic species in side groups and main chains: investigation in momolayers and multilayers. J. Amer. Chem. Soc. 109, 788–796.Google Scholar
  118. 690.
    T. Tjivikua, P. Ballester, and J. Rebek, Jr. (1990), A self-replicating system. J. Amer. Chem. Soc. 112, 1249–1250.Google Scholar
  119. 691.
    J.I. Hong, Q. Feng, V. Rotello, and J. Rebek, Jr. (1992), Competition, cooperation, and mutation: improving a synthetic replicator by light irradiation. Science 255, 848–850.Google Scholar
  120. 692.
    E.A. Wintner, M.M. Conn, and J. Rebek, Jr. (1994), Studies in molecular replication. Acc. Chem. Res. 27, 198–203.Google Scholar
  121. 693.
    J.M. Lehn (1990), Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Ed. Engl. 29, 1304–1319.Google Scholar
  122. 694.
    M. Kotera, J.M. Lehn, and J.P. Vigneron (1994), Self-assembled supramolecular rigid rods. Chem. Commun. 197–199.Google Scholar
  123. 695.
    CT. Seto and G.M. Whitesides (1991), Self-assembly of hydrogen-bonded 2 + 3 supramolecular complex. J. Amer. Chem. Soc. 113, 712–713.Google Scholar
  124. 696.
    C.T. Seto and G.M. Whitesides (1993), Molecular self-assembly through hydrogen bonding: supramolecular aggregates based on the cyanuric acid-melamine lattice. J. Amer. Chem. Soc. 115, 905–916.Google Scholar
  125. 697.
    M. Inouye, K. Hashimoto, and K. Isagawa (1994), Nondestructive detection of acetylcholine in protic media: artificial-signaling acetylcholine receptors. J. Amer. Chem. Soc. 116, 5517–5518.Google Scholar
  126. 698.
    J. Moore and S. Lee (1994), Crafting molecular based solids. Chem. & Ind. 556–560.Google Scholar
  127. 699.
    Y. Zhang and N.C. Seeman (1994), Construction of a DNA-truncated octahedron. J. Amer. Chem. Soc. 116, 1661–1669.Google Scholar
  128. 700.
    D.M. Rudkevich, Z. Brzozka, M. Palys, H.C. Visser, W. Verboom, and D.N. Reinhoult (1994), A difunctional receptor for the simultaneous com-plexation of anions and cations; recognition of KH2PO4. Angew. Chem. Int. Ed. Engl. 33, 467–468.Google Scholar
  129. 701.
    S.H. Kawai, S.L. Gilat, and J.M. Lehn (1994), A dual-mode optical-electrical molecular switching device. Chem. Commun. 1011–1013.Google Scholar
  130. 702.
    C.M. Drain, R. Fischer, E.G. Nolen, and J.M. Lehn (1993), Self-assembly of a bisporphyrin supramolecular cage induced by molecular recognition between complementary hydrogen bonding sites. Chem. Commun. 243–245.Google Scholar
  131. 703.
    U. Koert, M.M. Harding, and J.M. Lehn (1990), DNH deoxyribonucleo-helicates: self-assembly of oligonucleosidic double-helical metal complexes. Nature 346, 339–342.Google Scholar
  132. 704a.
    J.M. Lehn and A. Rigault (1988), Helicates: tetra- and pentanuclear double helix complexes of Cu(I) and poly(bipyridine) strands. Angew. Chem. Int. Ed. Engl. 27, 1095–1097.Google Scholar
  133. 704b.
    J.M. Lehn (1994), Perspectives in supramolecular chemistry: From molecular recognition towards self-organization. Pure & Appl. Chem. 66, 1961–1966.Google Scholar
  134. 705.
    D. Bradley (1993), Will future computers be all wet? Science 259, 890–892.Google Scholar
  135. 706.
    P.R. Ashton, R. Battardini, W. Balzani, M.T. Gandolfi, D.J.F. Marquis, L. Pérez-Garcia, L. Prodi, J.F. Stoddart, and M. Venturi (1994), The self-assembly of controllable [2]catenanes. Chem. Commun. 177–180.Google Scholar
  136. 707.
    D. Bradley (1991), How to make a molecular shuttle. New Scientist July 27, 20.Google Scholar
  137. 708.
    G. Schill (1971), Catenanes, Rotaxanes, and Knots. Academic Press, New York.Google Scholar
  138. 709.
    P.R. Ashton, D. Philp, N. Spenser, J.F. Stoddart, and D.J. Williams (1994), A self-organized layered superstructure of arrayed [2]pseudorotaxane. Chem. Commun. 181–184.Google Scholar
  139. 710.
    J.F. Stoddart (1993), Molecular recognition and self-assembly. An. Quim. 89, 51–56.Google Scholar
  140. 711.
    J.L. Brédas (1994), Molecular geometry and nonlinear optics. Science 263, 487–489.Google Scholar
  141. 712.
    D.B. Amabilino, P.R. Asthon, A.S. Reder, N. Spencer, and J.F. Stoddart (1994), The two-step self-assembly of [4]- and [5]catenanes. Angew. Chem. Int. Ed. Engl. 33, 433–436.Google Scholar
  142. 713.
    D.B. Amabilino, P.R. Asthon, A.S. Reder, and J.F. Stoddart (1994), Olympiadane. Angew. Chem. Int. Ed. Engl. 33, 1286–1290.Google Scholar
  143. 714.
    M.J. Gunter, D.C.R. Hockless, M.R. Johnston, B.W. Skelton, and A.H. White (1994), Self-assembling porphyrin [2]-catenanes. J. Amer. Chem. Soc. 116, 4810–4823.Google Scholar
  144. 715.
    W. Worthy (1988), New families of multibranched macromolecules synthesized. Chem. & Eng. News Feb. 22, 19–21.Google Scholar
  145. 716.
    H.B. Mekelburger, W. Jaworek, and F. Vögtle (1992), Dendrimers, arborols, amd cascade molecules: breakthrough into generations of new materials. Angew. Chem. Int. Ed. Engl. 31, 1571–1576.Google Scholar
  146. 717.
    C.J. Hawker and J.M.J. Freenet (1990), Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Amer. Chem. Soc. 112, 7638–7647.Google Scholar
  147. 718.
    T.M. Miller and T.X. Neeman (1990), Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzene. Chem. Mater. 2, 346–349.Google Scholar
  148. 719.
    J. Issberner, R. Moors, and F. Vögtle (1994), Dendrimers: From generations and functional groups to functions. Angew. Chem. Int. Ed. Engl. 33, 2413–2420.Google Scholar
  149. 720.
    D.A. Tomalia (1993), Starburst™/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry set. Aldrichimica Acta 26, No. 4, 91–101.Google Scholar
  150. 721.
    D. Seebach, J.M. Lapierre, K. Skobridis, and G. Greiveldinger (1994), Chiral dendrimers from tris(hydroxymethyl)-methane derivatives. Angew. Chem. Int. Ed. Engl. 33, 440–442.Google Scholar
  151. 722.
    PJ. Dandliker, F. Diederich, M. Gross, C.B. Knobler, A. Louati, and E.M. Sanford (1994), Dendritic porphyrins: modulating redox potentials of electroactive chromophores with pendant multifunctionality. Angew. Chem. Int. Ed. Engl. 33, 1739–1742.Google Scholar
  152. 723.
    P.R. Dvornic and D.A. Tomalia (1994), A family tree for polymers. Chem. Britain 641–645.Google Scholar
  153. 724.
    S. Mann (1994), Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365, 499–505.Google Scholar
  154. 725.
    L. Addadi and S. Weiner (1992), Control and design principles in biological mineralization. Angew. Chem. Int. Ed. Engl. 31, 153–169.Google Scholar
  155. 726.
    R.F. Service (1994), Self-assembly comes together. Science 265, 316–318.Google Scholar
  156. 727.
    K. Aoki, L.C. Brousseau, and T.E. Mallouk (1993), Metal phosphonate-based quartz crystal microbalance sensors for amines and amonia. Sensors & Actuators B B14, 703–704.Google Scholar
  157. 728.
    H.C. Yang, K. Aoki, H.G. Hong, D.D. Sackett, M.F. Arendt, S.L. Yau, C.M. Bell, and T.E. Mallouk (1993), Growth and characterization of metal (II) alkanebisphosphonate multilayer thin film on gold surfaces. J. Amer. Chem. Soc. 115, 11855–11862.Google Scholar
  158. 729.
    F.M. Menger and S.J. Lee (1994), Long organic fibers obtained by non-covalent synthesis. J. Amer. Chem. Soc. 116, 5987–6988.Google Scholar
  159. 730.
    J. Emsley (1994), Tangled tale of a self-organizing fiber. New Scientist Aug. 6, 17.Google Scholar
  160. 731.
    M. Simard, D. Su, and J.D. Wuest (1991), Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Amer. Chem. Soc. 113, 4696–4698.Google Scholar
  161. 732.
    P. Baxter, J.M. Lehn, A. DeCian, and J. Fischer (1993), Multicom-ponent self-assembly: spontaneous formation of a cylindrical complex from five ligands and six metal ions. Angew. Chem. Int. Ed. Engl. 32, 69–71.Google Scholar
  162. 733.
    P.N.W. Baxter, J.M. Lehn, J. Fisher, and M.T. Youinou (1994), Self-assembly and structure of 3 × 3 inorganic grid from nine silver ions and six ligand components. Angew. Chem. Int. Ed. Engl. 33, 2284–2287.Google Scholar
  163. 734.
    F. Diederich and Y. Rubin (1992), Synthetic approaches toward molecular and polymeric carbon ätiotropes. Angew. Chem. Int. Ed. Engl. 31, 1101–1123.Google Scholar
  164. 735.
    F. Diederich (1994), Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207.Google Scholar
  165. 736.
    U.H.F. Bunz (1994), Polyynes—fascinating monomers for the construction of carbon networks. Angew. Chem. Int. Ed. Engl. 33, 1073–1076.Google Scholar
  166. 737.
    J. Anthony, C. Boudon, F. Diederich, J.P. Gisselbrecht, V. Grämlich, M. Gross, M. Hobi, and P. Seiler (1994), Stable conjugated carbon rods with a persilylethynylated polytriacetylene backbone. Angew. Chem. Int. Ed. Engl. 33, 763–766.Google Scholar
  167. 738.
    H.L. Anderson, R. Faust, Y. Rubin, and F. Diederich (1994), Fullerene-acetylene hybrids: on the way to synthetic molecular carbon alio tropes. Angew. Chem. Int. Ed. Engl. 33, 1366–1368.Google Scholar
  168. 739.
    R. Baum (1993), Subtle tensions in organic chemistry emerge at conference. Chem. Eng. News, Nov. 29, 50–51.Google Scholar
  169. 740.
    A.P. DeSilva and C.P. McCoy (1994), Switchable photonic molecules in information technology. Chem. & Ind. 992–996.Google Scholar
  170. 741.
    T.J. Marks and M.A. Ratner (1995), Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angew. Chem. Int. Ed. Engl. 34, 155–173.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Hermann Dugas
    • 1
  1. 1.Département de ChimieUniversité de MontréalMontréalCanada

Personalised recommendations