Skip to main content

Metal Ions

  • Chapter
Bioorganic Chemistry

Part of the book series: Springer Advanced Texts in Chemistry ((SATC))

Abstract

This chapter will provide some basic concepts concerning the reactivity of biological systems utilizing metal ions. Although N, S, O, P, C, and H are the basic elements used to construct the building blocks of biological compounds, certain metal ions are essential to the organisms. It will be seen that the interactions of metal ions with biological molecules are generally of a coordinate nature and are used primarily for maintaining charge neutrality. Also, they are often involved in catalytic processes. Thus, the subjects developed in this chapter interphase organic and inorganic chemical principles.

Les belles Actions cachées sont les plus estimables.” Pascal

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.L. Vallee and R.J.P. Williams (1968), Enzyme action: Views derived from metalloenzyme studies. Chem. Br. 4, 397–402.

    CAS  Google Scholar 

  2. M.M. Jones and T.H. Pratt (1976), Therapeutic chelating agents. J. Chem. Educ. 53, 342–347.

    CAS  Google Scholar 

  3. E.W. Ainscough and A.M. Brodie (1976), The role of metal ions in proteins and other biological molecules. J. Chem. Educ. 53, 156–158.

    CAS  Google Scholar 

  4. Y. Pocker and D.W. Bjorkquist (1977), Comparative studies of bovine carbonic anhydrase in H2O and D2O. Stopped-flow studies of the kinetics of interconversion of CO2 and HCO3 -. Biochemistry 16, 5698–5707.

    CAS  Google Scholar 

  5. C.C. Tang, D. Davalian, P. Huand, and R. Breslow (1978), Models of metal binding sites in zinc enzymes. Synthesis of tris [4(5)-imidazolyl] carbinol (4-TIC), tris (2-imidazolyl)-carbinol(2-TIC), and related ligands and studies on metal complex binding constants and spectra. J. Amer. Chem. Soc. 100, 3918–3922.

    CAS  Google Scholar 

  6. P. Woolley (1980), Models for metal ion function and evolution of the catalytic step in carbonic anhydrase, In: Biophysics and Physiology of Carbon Dioxide (C. Bauer, G. Gros, and H. Bartels, Eds.), pp. 216–225. Springer-Verlag, Berlin.

    Google Scholar 

  7. F.A. Quiocho and W.N. Lispcomb (1971), Carboxypeptidase A: A protein and an enzyme. Adv. Prot. Chem. 25, 1–78.

    CAS  Google Scholar 

  8. D.W. Christianson and W.N. Lipscomb (1989), Carboxypeptidase A. Acc. Chem. Res. 22, 62–69.

    CAS  Google Scholar 

  9. S.J. Gardell, C.S. Craik, D. Hilvert, M.S. Urdea, and W.J. Rutter (1985), Site-directed mutagenesis shows that tyrosine 248 of carboxypeptidase A does not play a crucial role in catalysis. Nature 317, 551–555.

    CAS  Google Scholar 

  10. R. Breslow, D.E. McClure, R.S. Brown, and J. Eisenach (1975), Very fast zinc catalyzed hydrolysis of an anhydride. A model for the rate and mechanism of carboxypeptidase A catalysis. J. Amer. Chem. Soc. 97, 194–195.

    CAS  Google Scholar 

  11. R. Breslow and D.E. McClure (1976), Cooperative catalysis of the cleavage of an amide by carboxylate and phenolic groups in a carboxypeptidase A model. J. Amer. Chem. Soc. 98, 258–259.

    CAS  Google Scholar 

  12. R. Breslow, J. Chin, D. Hubert, and G. Trainor (1983), Evidence for the general base mechanism in carboxypetidase A-catalyzed reactions: Partitioning studies on nucleophiles and H2180 kinetic isotope effects. Proc. Natl. Acad. Sci. USA 80, 4585–4589.

    CAS  Google Scholar 

  13. R. Breslow and A. Schepartz (1987), On the mechanism of peptide cleavage by carboxypeptidase A and related enzymes. Chem. Lett. (Japan) 1–4.

    Google Scholar 

  14. R. Breslow and D. Wernick (1976), On the mechanism of catalysis by carboxypeptidase A. J. Amer. Chem. Soc. 98, 259–261.

    CAS  Google Scholar 

  15. T.H. Fife and V.L. Squillacote (1978), Metal ion effects on intramolecular nucleophilic carboxyl group participation in amide and ester hydrolysis. Hydrolysis of N-(S-quinolyl)phthalamic acid and 8-quinolyl hydrogen glutarate. J. Amer. Chem. Soc. 100, 4787–4793.

    CAS  Google Scholar 

  16. M.W. Makinen, L.C. Kuo, J.J. Dymouski, and S. Jaffer (1979), Catalytic role of the metal ion of carboxypeptidase A in ester hydrolysis. J. Biol. Chem. 254, 356–366.

    CAS  Google Scholar 

  17. D.W. Christianson, P.R. David, and W.N. Lipscomb (1987), Mechanism of carboxypeptidase A: Hydration of a ketonic substrate analogue. Proc. Natl. Acad. Sci. USA 84, 1512–1515.

    CAS  Google Scholar 

  18. D.W. Christianson and W.N. Lipscomb (1987), Carboxypeptidase A: Novel enzyme-substrate-product complex. J. Amer. Chem. Soc. 109, 5536–5538.

    CAS  Google Scholar 

  19. R. Breslow and C. McAllister (1971), Intramolecular bifunctional catalysis of ester hydrolysis by metal ion and carboxylate in a carboxypeptidase model. J. Amer. Chem. Soc. 93, 7096–7097.

    CAS  Google Scholar 

  20. G.J. Lloyd and B.S. Cooperman (1971), Nucleophilic attack by zinc(II)-pyridine-2-carbaldoxime anion on phosphorylimidazole. A model for enzymatic phosphate transfer. J. Amer. Chem. Soc. 93, 4883–4889.

    CAS  Google Scholar 

  21. D.S. Sigman and C.T. Jorgenren (1972), Models for metalloenzymes. The zinc (II)-catalyzed transesterification of N-(β-hydroxyethyl)ethylenediamine by p-introphenyl picolinate. J. Amer. Chem. Soc. 94, 1724–1730.

    CAS  Google Scholar 

  22. D.A. Buckingham and J.P. Collman (1967), Hydrolysis of N-terminal peptide bonds and amino acid derivatives by the β-hydroxoaquotriethyl-enetetramine cobalt(III)ion. J. Amer. Chem. Soc. 89, 1082–1087.

    CAS  Google Scholar 

  23. D.A. Buckingham, F.R. Keen, and A.M. Sargeson (1974); Facile intramolecular hydrolysis of dipeptides and glycinamide. J. Amer. Chem. Soc. 96, 4981–4983.

    CAS  Google Scholar 

  24. E. Kimura (1974), Sequential hydrolysis of peptides with β-hydroxoaquo-triethylenetetraminecobalt(III) ion. Inorg. Chem. 13, 951–954.

    Google Scholar 

  25. M.W. Göbel (1994), Binuclear metal complexes as efficient intermediated in biochemically relevant hydrolysis reactions. Angew. Chem. Int. Ed. Engl. 33, 1141–1443.

    Google Scholar 

  26. F. Frieden (1975), Non-covalent interactions. J. Chem. Educ. 52, 754–761.

    CAS  Google Scholar 

  27. W.A. Hendrickson (1977), The molecular architecture of oxygen carrying proteins. Trends Biochem. Sci. 2, 108–111.

    CAS  Google Scholar 

  28. J.C. Kendrew (1961), The three-dimensional structure of a protein molecule. Sci. Amer. 205, December, 96–110.

    CAS  Google Scholar 

  29. S.J. Lippard (1986), The bioinorganic chemistry of rust. Chem. Britain 222–229.

    Google Scholar 

  30. E.F. Epstein, I. Bernai, and A.L. Balch (1970), Activation of molecular oxygen by a metal complex. The formation and structure of the anion [Ph3POFe(S2C2{CF3}2)2]. Chem. Comm. 136–138.

    Google Scholar 

  31. J. Almog, J.E. Baldwin, R.I. Dyer, and M. Peters (1975), Condensation of tetraaldehydes with pyrrole. Direct synthesis of “capped” porphyrins. J. Amer. Chem. Soc. 97, 226–227.

    CAS  Google Scholar 

  32. J. Almog. J.E. Baldwin, and J. Huff (1975), Reversible oxygenation and autooxidation of a “capped” porphyrin iron(II) complex. J. Amer. Chem. Soc. 97, 227–228.

    CAS  Google Scholar 

  33. C.K. Chang and T.G. Traylor (1973), Synthesis of the myoglobin active site. Proc. Nat. Acad. Sci. USA 78, 2647–2650.

    Google Scholar 

  34. C.K. Chang and T.G. Traylor (1973), Solution behavior of a synthetic myoglobin active site. J. Amer. Chem. Soc. 95, 5810–5811.

    CAS  Google Scholar 

  35. C.K. Chang and T.G. Traylor (1973), Neighboring group effect in heme-carbon monoxide binding. J. Amer. Chem. Soc. 95, 8475–8477.

    CAS  Google Scholar 

  36. C.K. Chang and T.G. Traylor (1973), Proximal base influence on the binding of oxygen and carbon monoxide to heme. J. Amer. Chem. Soc. 95, 8477–8479.

    CAS  Google Scholar 

  37. T.G. Traylor, D. Campbell, S. Tsuchiya (1979), Cyclophane porphyrin. 2. Models for steric hindrance to CO ligation in hemoproteins. J. Amer. Chem. Soc. 101, 4748–4749.

    CAS  Google Scholar 

  38. E. Bayer and G. Holzbach (1977), Synthetic homopolymers for reversible binding of molecular oxygen. Angew. Chem. Int. Ed. Engl. 16, 117–118.

    CAS  Google Scholar 

  39. J.P. Collman (1977), Synthetic models for the oxygen-binding hemoproteins. Acc. Chem. Res. 10, 265–272.

    CAS  Google Scholar 

  40. J.P. Collman, J.L. Brauman, E. Rose, and K.S. Suslick (1978), Cooperativity in O2 binding to iron porphyrins. Proc. Nat. Acad. Sci. USA 75, 1052–1055.

    CAS  Google Scholar 

  41. N. Farrell, D.H. Dolphin, and B.R. James (1978), Reversible binding of dioxygen to ruthenium(II) porphyrins. J. Amer. Chem. Soc. 100, 324–326.

    CAS  Google Scholar 

  42. F.S. Molinaro, R.G. Little, and J.A. Ibers (1977), Oxygen binding to a model for the active site in cobalt-substituted hemoglobin. J. Amer. Chem. Soc. 99, 5628–5632.

    CAS  Google Scholar 

  43. J.P. Collman, J.I. Rauman, K.M. Doxsee, T.R. Haibert, S.E. Hayes, and K.S. Suslick (1978), Oxygen binding to cobalt porphyrins. J. Amer. Chem. Soc. 100, 2761–2766.

    CAS  Google Scholar 

  44. T.G. Traylor, N. Koga, and L.A. Deardurff (1985), Structural differentiation of CO and O2 binding to iron porphyrins: Polar pocket effects. J. Amer. Chem. Soc. 107, 6405–6510.

    Google Scholar 

  45. C.K. Chang (1977), Stacked double-macrocyclic ligands. 1. Synthesis of “crowned” porphyrin. J. Amer. Chem. Soc. 99, 2819–2822.

    CAS  Google Scholar 

  46. S. Takagi, T.K. Miyamoto, and Y. Sasaki (1985), A new synthetic model for myoglobin: “Tulip garden” porphyrin. Bull. Chem. Soc. Jpn. 58, 447–454.

    CAS  Google Scholar 

  47. J.E. Baldwin, M.J. Crossley, T. Klose, E.A. O’Rear III, and M.K. Peters (1982), Synthesis and oxygenation of iron(II) “strapped” porphyrin complexes. Tetrahedron 38, 27–39.

    CAS  Google Scholar 

  48. A.R. Battersby, S.A.J. Bartholomew, and T. Nitta (1983), Models for hemoglobin-myoglobin: Studies with loosely and tightly strapped imidazole ligands. Chem. Commun. 1291–1293.

    Google Scholar 

  49. I. Tabushi, S.-I. Kugimiya, M.G. Kinnaird, and T. Sasaki (1985), Artificial allosteric system. 2. Cooperative 1-methylimidazole binding to an artificial allosteric system, zinc-gable porphyrin-dipyridylmethane complex. J. Amer. Chem. Soc. 107, 4192–4199.

    CAS  Google Scholar 

  50. J.P. Collman, C.S. Bencosme, C.E. Barnes, and B.D. Miller (1983), Two new members of the dimeric β-linked face-to-face porphyrin family: FTF4* and FTF3. J. Amer. Chem. Soc. 105, 2704–2710.

    CAS  Google Scholar 

  51. G.M. Dubowchik and A.D. Hamilton (1985), Controlled conformational changes in covalently-linked dimeric porphyrins. Chem. Commun. 904–906.

    Google Scholar 

  52. E. Tsuchida, H. Nishide, and M. Yuasa (1986), pH-Induced oxygen uptake and evolution by aqueous synthetic heme-lipid solution. Chem. Commun. 1107–1108.

    Google Scholar 

  53. I. Hamachi, K. Nakamura, A. Fujita, and T. Kumitake (1993), Anisotropic incorporation of lipid-anchored myoglobin into a phospholipid bilayer membrane. J. Amer. Chem. Soc. 115, 4966–4970.

    CAS  Google Scholar 

  54. I. Hamachi, S. Tanaka, and S. Shinkai (1993), Light-driven activation of reconstituted myoglobin with a ruthenium tris(2,2′-bipyridine) pendant. J. Amer. Chem. Soc. 115, 10458–10459.

    CAS  Google Scholar 

  55. R. Malkin (1973), Iron-Sulfur Proteins, Vol. II, Academic Press, New York.

    Google Scholar 

  56. R.H. Holm (1977), Synthetic approaches to the active sites of iron-sulfur proteins. Acc. Chem. Res. 10, 427–434.

    CAS  Google Scholar 

  57. R.H. Holm (1987), Metal-centered oxygen atom transfer reactions. Acc. Chem. Res. 87, 1401–1449.

    CAS  Google Scholar 

  58. J.A. Ibers and R.H. Holm (1980), Modeling coordination sites in metallo-biomolecules, Science 209, 223–235.

    CAS  Google Scholar 

  59. S.J. Lippard (1988), Oxo-bridged polyion centers in biological chemistry. Angew. Chem. Int. Engl. Ed. 27, 344–361.

    Google Scholar 

  60. A.L. Feig and S.J. Lippard (1994), Reactions of non-heme iron(II) centers with dioxygen in biology and chemistry. Chem. Rev. 94, 759–805.

    CAS  Google Scholar 

  61. W.H. Rastetter, T.J. Erickson, and M.C. Venuti (1981), Synthesis of iron chelators. Enterobactin, enantioenterobactin, and a chiral analogue. J. Org. Chem. 46, 3579–3586.

    CAS  Google Scholar 

  62. V.L. Pecoraro, F.L. Weitl, and K.N. Raymond (1981), Ferric ion-specific sequestering agents. 7. Synthesis, iron-exchange kinetics, and stability constants of N-substituted, sulfonated catechoylamide analogues of enterobactin. J. Amer. Chem. Soc. 103, 5133–5140.

    CAS  Google Scholar 

  63. P. Stutte, W. Kiggen, and F. Vögtle (1987), Large molecular cavities bearing siderophore type functions. Tetrahedron 43, 2065–2074.

    CAS  Google Scholar 

  64. F.P. Guengerich and T.L. MacDonald (1984), Chemical mechanisms of catalysis by cytochromes P-450: A unified view. Acc. Chem. Res. 17, 9–16.

    CAS  Google Scholar 

  65. J.P. Collman and S.E. Groh (1982), “Mercaptan-tail” porphyrins: Synthetic analogues for the active site of cytochrome P-450. J. Amer. Chem. Soc. 104, 1391–1403.

    Google Scholar 

  66. A.R. Battersby, W. Howson, and A.D. Hamilton (1982), Model studies on the active site of cytochrome P-450: An Fe(II)-porphyrin carrying a strapped thiolate ligand. J. Chem. Soc. Chem. Commun. 1266–1268.

    Google Scholar 

  67. J.I. Stesune and D. Dolphin (1987), Organometallic aspects of cytochrome P-450 metabolism. Can. J. Chem. 65, 459–467.

    Google Scholar 

  68. J.P. Collman, J.I. Brauman, B. Meunier, and S.A. Raybuck (1984), Epoxidation of olefins by cytochrome P-450 model compounds: Mechanism of oxygen atom transfer. Proc. Natl. Acad. Sci. USA 81, 3245–3248.

    CAS  Google Scholar 

  69. I. Tabushi and K. Morimitsu (1984), Stereospecific, regioselective, and catalytic monoepoxidation of polyolefins by the use of a P-450 model, H2–O2-TPP-Mn-colloidal platinum. J. Amer. Chem. Soc. 106, 6871–6872.

    CAS  Google Scholar 

  70. J.T. Groves, G.D. Fate, and J. Lahiri (1994), Directed multi-heme self-assembly and electron transfer in a model membrane. J. Amer. Chem. Soc. 116, 5477–5478.

    CAS  Google Scholar 

  71. G.L. Eichhorn (1973), Inorganic Biochemistry, Vols. 1 and 2, Elsevier, New York.

    Google Scholar 

  72. K.D. Karlin and Y. Gultneh (1987), Binding and activation of molecular oxygen by copper complexes. Prog. Inorg. Chem. 35, 219–327.

    CAS  Google Scholar 

  73. A.R. Amundsen, J. Whelan, and B. Bosnich (1977), Biological analogues. On the nature of the binding sites of copper-containing proteins. J. Amer. Chem. Soc. 99, 6730–6739.

    CAS  Google Scholar 

  74. R.R. Gagné, J.L. Allison, R.S. Gall, and C.A. Koval (1977), Models for copper-containing proteins: Structure and properties of novel five-coordinate copper(I) complexes. J. Amer. Chem. Soc. 99, 7170–7178.

    Google Scholar 

  75. D.A. Buckingham, M.J. Gunter, and L.N. Mander (1978), Synthetic models for bis-metallo active sites. A porphyrin capped by a tetrakis (pyridine) ligand system. J. Amer. Chem. Soc. 100, 2899–2901.

    CAS  Google Scholar 

  76. Y. Agnus, R. Louis, and R. Weiss (1979), Bimetallic copper(I) and (II) macrocyclic complexes as mimics for type 3 copper pairs in copper enzymes. J. Amer. Chem. Soc. 101, 3381–3384.

    CAS  Google Scholar 

  77. P.K. Coughlin, J.C. Dewan, S.J. Lippard, E. Watanabe, and J.-M. Lehn (1979), Synthesis and structure of the imidazolate bridged dicopper(II) ion incorporated into a circular cryptate macrocycle. J. Amer. Chem. Soc. 101, 265–266.

    CAS  Google Scholar 

  78. J.-M. Lehn (1980), Dinuclear cryptates: Dimetallic macropolycyclic inclusion complexes. Concepts-design-prospects. Pure & Appl. Chem. 52, 2441–2459.

    CAS  Google Scholar 

  79. M.J. Gunter and J.M. Mander (1981), Synthesis and atropisomer of porphyrin containing functionalization at the 5,15-meso positions: Application to the synthesis of binuclear ligand systems. J. Org. Chem. 46, 4792–4795.

    CAS  Google Scholar 

  80. J.P. Collman, A.O. Chong, G.B. Jameson, R.T. Oakley, E. Rose, E.R. Schmitton, and J.A. Ibers (1981), Synthesis of “face-to-face” porphyrin dimers linked by 5,15-substituents: Potential binuclear multielectron redox catalysts. J. Amer. Chem. Soc. 103, 516–533.

    CAS  Google Scholar 

  81. D. Sellmann, W. Soglowek, F. Knoch, and M. Moll (1989), Nitrogenase model compounds: [μ-N2H2{Fe(“NHS4”)}2], the prototype for the coordination of diazene to iron sulfur centers and its stabilization through strong NH … S hydrogen bonds. Angew. Chem. Int. Ed. Engl. 28, 1271–2272.

    Google Scholar 

  82. C.O. Dietrich-Buchecker and J.P. Sauvage (1987), Interlocking of molecular threads: From the statistical approach to the template synthesis of catenands. Chem. Rev. 87, 795–810.

    CAS  Google Scholar 

  83. C.O. Dietrich-Buchecker, J.P. Sauvage, and J.P. Kintzinger (1983). Une nouvelle famille de molécules: Les métallo-catenanes. Tetrahedron Lett. 24, 7095–5098.

    Google Scholar 

  84. C.O. Dietrich-Buchecker, A. Khemiss, and J.P. Sauvage (1986), High-yield synthesis of multiring copper (I) catenates by acetylenic oxidative coupling. Commun. 1376–1378.

    Google Scholar 

  85. C.O. Dietrich-Buchecker, J. Guilhem, A.K. Khemiss, J.P. Kintzinger, C. Pascard, and J.P. Sauvage (1987), Molecular structure of a [3]-catenate: Curling up of the interlocked system by interaction between the two copper complex subunits. Angew. Chem. Int. Ed. Engl. 26, 661–663.

    Google Scholar 

  86. H.M. Colquhoun, J.F. Stoddart, and D.J. Williams (1986), Second-sphere coordination—a novel rôle for molecular receptors. Angew. Chem. Int. Ed. Engl. 25, 487–507.

    Google Scholar 

  87. C.O. Dietrich-Bruchecker and J.P. Sauvage (1989), A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. Engl. 28, 189–192.

    Google Scholar 

  88. J.C. Chambon, V. Heitz, and J.P. Sauvage (1992), A rotaxane with two rigidly held porphorins as stoppers. Chem. Commun. 1131–1133.

    Google Scholar 

  89. A.R. Mcintosh, A. Siemiarczuk, J.R. Bolton, M.J. Shilman, T.F. Ho, and A.C. Weedon (1983), Intramolecular photochemical electron transfer. 1. EPR and optical absorption evidence for stabilized charge separation in linked porphyrin-quinone molecules. J. Amer. Chem. Soc. 105, 7215–7223.

    CAS  Google Scholar 

  90. J.H. Fendler (1987), Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87, 877–899.

    CAS  Google Scholar 

  91. M.R. Wasielewski, W.A. Svec, and B.T. Cope (1978), Bis(chlorophyll) cyclophanes, new models of special pair chlorophyll. J. Amer. Chem. Soc. 100, 1961–1962.

    CAS  Google Scholar 

  92. R.E. Overfield, A. Scherz, K.J. Kaufmann, and M.R. Wasielewski (1983), Photophysics of bis(chlorophyll) cyclophanes: Models of photosynthetic reaction centers. J. Amer. Chem. Soc. 105, 4256–4260.

    CAS  Google Scholar 

  93. R.R. Bucks and S.G. Boxer (1982), Synthesis and spectroscopic properties of a novel cofacial chlorophyll-base dimer. J. Amer. Chem. Soc. 104,340–343.

    CAS  Google Scholar 

  94. J. Haggin (1986), New source of gaseous fuels remain goal of researchers. Chem. & Eng. News. Jan. 20, 49–51.

    Google Scholar 

  95. B. Morgan and D. Dolphin (1985), The synthesis of porphyrins doubly linked to quinones by hydrocarbon chains. Angew. Chem. Int. Ed. Engl. 24, 1003–1005.

    Google Scholar 

  96. J.S. Lindsey and D.C. Mauzerall (1982), Synthesis of a cofacial porphyrin-quinone via entropically favored macropolycyclization. J. Amer. Chem. Soc. 104, 4498–4500.

    CAS  Google Scholar 

  97. T.A. Moore, D. Gust, P. Mathis, J.C. Mialocq, C. Chachaty, R.V. Bensasson, E.J. Land, D. Doiri, P.A. Liddell, W.R. Lehmann, G.A. Nemeth, and A.L. Moore (1984), Photodriven charge separation in a cara-tenoporphyrin quinone triad. Nature 307, 630–632.

    CAS  Google Scholar 

  98. J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel (1984), X-Ray structure analysis of a membrane protein complex. Electron analysis map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol. 180, 385–398.

    CAS  Google Scholar 

  99. G.M. Dubowchik and A.D. Hamilton (1986), Towards a synthetic model of the structure of the photosynthetic reaction centre. Chem. Commun. 1391–1394.

    Google Scholar 

  100. G.M. Dubowchik and A.D. Hamilton (1987), Synthesis of tetrameric and hexameric cyclo-porphyrins. Chem. Commun. 293–295.

    Google Scholar 

  101. I. Abdalmuhdi and C.K. Chang (1985), A novel synthesis of triple-deckered triporphyrin. J. Org. Chem. 50, 411–413.

    CAS  Google Scholar 

  102. H.A. Staab, M. Tercel, R. Fischer, and C. Krieger (1994), Synthesis and properties of a vertically stacked porphyrin-quinone(1)-quinone(2) cyclo-phane. Angew. Chem. Int. Ed. Engl. 33, 1463–1466.

    Google Scholar 

  103. H.A. Staab and T. Carell (1994), Synthesis and properties of a vertically stacked porphyrin(1)-porphyrin(2)-quinone cyclophane. Angew. Chem. Int. Ed. Engl. 33, 1466–1468.

    Google Scholar 

  104. J.C. Rodriguez-Ubis, B. Alpha, D. Plancherel, and J.-M. Lehn (1984), Photoactive cryptands. Synthesis of the sodium cryptâtes of macrobicyclic ligands containing bipyridine and phenanthroline group. Helv. Chim. Acta. 67, 2264–2269.

    CAS  Google Scholar 

  105. B. Alpha, J.-M. Lehn, and G. Mathis (1987), Energy transfer luminescence of europium(III) and terbium(III) cryptates of macrobicyclic polypyridine ligands. Angew. Chem. Int. Ed. Engl. 26, 266–267.

    Google Scholar 

  106. R.H. Abeles and D. Dolphin (1974), The vitamin B12 coenzyme. Acc. Chem. Res. 9, 114–120.

    Google Scholar 

  107. J. Rétey, A. Ulmani-Ronchi, J. Seibl, and D. Arigoni (1966), Zum mech-anismus der Propandioldehydrase-Reaktion. Experentia 22, 502–503.

    Google Scholar 

  108. G.N. Schrauzer (1968), Organocobalt chemistry of vitamin B12 model compounds (cobaloximes). Acc. Chem. Res. 1, 97–103.

    CAS  Google Scholar 

  109. G.N. Schrauzer (1976), New developments in the field of vitamin B12: Reactions of the cobalt atom in corrins and in vitamin B12 model compounds. Angew. Chem. Int. Ed. Engl. 15, 417–426.

    CAS  Google Scholar 

  110. G.N. Schrauzer (1977), New developments in the field of vitamin B12: Enzymatic reactions dependent upon corrins and coenzyme B12. Angew. Chem. Int. Ed. Engl. 16, 233–244.

    CAS  Google Scholar 

  111. P. Dowd, B.K. Trivedi, M. Shapiro, and L.K. Marwaha (1976), Vitamin B12 model studies. Migration of the acrylate fragment in the carbon-skeleton rearrangement leading to α-methyleneglutaric acid. J. Amer. Chem. Soc. 98, 7875–7877.

    CAS  Google Scholar 

  112. T. Toraya, E. Krodel, A.S. Mildran, and R.H. Abeles (1979), Role of peripheral side chains of vitamin B12 coenzymes in the reaction catalyzed by dioldehydrase. Biochemistry 18, 417–426.

    CAS  Google Scholar 

  113. J. Halpern, S.H. Kim, and T.W. Leung (1984), Cobalt-carbon bond dissociation energy of coenzyme B12. J. Amer. Chem. Soc. 106, 8317–8319.

    CAS  Google Scholar 

  114. R.B. Silverman and D. Dolphin (1973), A direct method for cobalt-carbon bond formation in cobalt(III)-containing cobalamins and cobaloximes. Further support for cobalt (III) π-complexes in coenzyme B12 dependent rearrangements. J. Amer. Chem. Soc. 95, 1686–1688.

    CAS  Google Scholar 

  115. R.B. Silverman and D. Dolphin (1974), Reaction of vinyl ethers with cobalamins and cobaloximes. J. Amer. Chem. Soc. 96, 7094–7096.

    CAS  Google Scholar 

  116. R.B. Silverman, D. Dolphin, T.J. Carty, E.K. Krodel, and R.H. Abeles (1974), Formylmethycobalamin. J. Amer. Chem. Soc. 96, 7096–7097.

    CAS  Google Scholar 

  117. L. Salem, O. Eisentein, N.T. Anh, H.B. Burgi, A. Devaquet, G. Segal, and A. Veillard (1977), Enzymatic catalysis. A theoretically derived transition state for coenzyme B12-catalyzed reaction. Nouv. J. Chim. 1, 335–347.

    CAS  Google Scholar 

  118. P. Dowd and R. Hershline (1986), Carbon-13 labeling study of the methylita-conate ⇌ α-methyleneglutarate model rearrangement reaction. Chem. Commun. 1409–1410.

    Google Scholar 

  119. H. Flohr, N. Paunhorst, and J. Rétey (1976), Synthesis, structure determination, and rearrangement of a model for the active site of methylmalonyl-CoA mutase with incorporated substrate. Angew. Chem. Int. Ed. Engl. 15, 561–562.

    CAS  Google Scholar 

  120. R. Breslow and P.L. Khanna (1976), An intramolecular model for the enzymatic insertion of coenzyme B12 into unactivated carbon-hydrogen bonds. J. Amer. Chem. Soc. 98, 1297–1299.

    CAS  Google Scholar 

  121. E.J. Corey, N.J. Cooper, and M.L.H. Green (1977), Biochemical catalysis involving coenzyme B12: A rational stepwise mechanistic interpretation of vicinal interchange rearrangements. Proc. Nat. Acad. Sci. USA 74, 811–815.

    CAS  Google Scholar 

  122. K. Sato, E. Hiei, S. Shimizu, and R. Abeles (1978), Affinity chromatography of N 5-methyltetrahydrofolate-homocysteine methyltransferase on a cob-alamin-Sepharose. FEBS Lett. 85, 73–76.

    CAS  Google Scholar 

  123. Y. Murakami, Y. Hisaeda, and T. Ohno (1991), Hydrophobic vitamin B12. Part 9. An artificial holoenzyme composed of hydrophobic vitamin B12 and synthetic bilayer membrane for carbon-skeleton rearrangements. J. Chem. Soc. Perkin Trans. II, 405–416.

    Google Scholar 

  124. Y. Murakami, Y. Hisaeda, A. Ogawa, T. Miyajima, O. Hayashida, and T. Ohno (1993), Aggregation behavior and reactivity of hydrophpbic vitamin B12 covalently bound to lipid in aqueous media. Tetrahedron Lett. 34, 863–866.

    CAS  Google Scholar 

  125. Y. Murakami, Y. Hisaeda, and T. Ohno (1990), Hydrophobic vitamin B12. Part 8. Carbon-skeleton rearrangement reactions catalyzed by hydrophobic vitamin B12 in octopus azaparacyclophane. Bioorg. Chem. 18, 49–72.

    CAS  Google Scholar 

  126. J.M. Wood (1974), Biological cycles for toxic elements in the environment. Science 183, 1049–1052.

    CAS  Google Scholar 

  127. J.S. Thayer (1977), Teaching bio-organometal chemistry. II. The metals. J. Chem. Educ. 54, 662–665.

    CAS  Google Scholar 

  128. S. Krishnamurthy (1992), Biomethylation and environmental transport of metals. J. Chem. Educ. 69, 347–350.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dugas, H. (1996). Metal Ions. In: Bioorganic Chemistry. Springer Advanced Texts in Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2426-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2426-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98910-5

  • Online ISBN: 978-1-4612-2426-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics