Skip to main content

Enzyme Chemistry

  • Chapter
Bioorganic Chemistry

Part of the book series: Springer Advanced Texts in Chemistry ((SATC))

  • 492 Accesses

Abstract

An enzyme is characterized by having both a high degree of specificity and a high efficiency of reaction. The factors involved in enzyme-catalyzed reactions are the main subject of this chapter.

Imagination and shrewd guesswork are powerful instruments for acquiring scientific knowledge quickly and inexpensively.” van’t Hoff

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hine (1978), Bifunctional catalysis of a-hydrogen exchange of aldehydes and ketones. Acc. Chem. Res. 11, 1–7.

    Article  CAS  Google Scholar 

  2. T.C. Bruice and S. Benkovic (1966) Bioorganic Mechanisms, Vol. 1, p. 134. Benjamin, New York.

    Google Scholar 

  3. P. Cossee (1962), Stereoregularity in heterogeneous Ziegler-Natta catalysis. Trans. Faraday Soc. 58, 1226–1232.

    Article  CAS  Google Scholar 

  4. W.W. Cleland (1975), What limits the rate of an enzyme-catalyzed reaction? Acc. Chem. Res. 8, 145–151.

    Article  CAS  Google Scholar 

  5. K.R. Hanson and I.A. Rose (1975), Interpretations of enzyme reaction stereospecificity. Acc. Chem. Res. 8, 1–10.

    Article  CAS  Google Scholar 

  6. G.E. Schultz and R.H. Schimer (1979), Principles of protein structure, Springer-Verlag. New York.

    Google Scholar 

  7. R.J.D. Miller (1994), Energetics and dynamics of deterministic protein motion. Acc. Chem. Res. 27, 145–150.

    Article  CAS  Google Scholar 

  8. A. Ferscht (1977), Enzyme Structure and Mechanism, pp. 44–48. Freeman, San Francisco.

    Google Scholar 

  9. P.A. Srere (1984), Why are enzymes so big? Trends Biochem. Sci. 9, 387–390.

    Article  CAS  Google Scholar 

  10. J.R. Knowles and W.J. Albery (1977), Perfection in enzyme catalysis: The energetics of triosephosphate isomerase. Acc. Chem. Res. 10, 105–111.

    Article  CAS  Google Scholar 

  11. W.L. Alworth (1972), Stereochemistry and Its Application in Biochemistry, Chap. 3. Wiley-Interscience, New York.

    Google Scholar 

  12. A.G. Ogston (1948), Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature 162, 963.

    Article  CAS  Google Scholar 

  13. F.A. Loewus, F.H. Westheimer, and B. Vennesland (1953), Enzymatic synthesis of the enantiomorphs of ethanol-1-d. J. Amer. Chem. Soc. 75, 5018–5023.

    Article  CAS  Google Scholar 

  14. D.M. Blow (1976), Structure and mechanism of chymotrypsin. Acc. Chem. Res. 9, 145–152.

    Article  CAS  Google Scholar 

  15. M.I. Page (1981), Enzymes-binding energy, catalysis and inhibition. Chem. & Ind. 144–150.

    Google Scholar 

  16. A.R. Fersht and A.J. Kirby (1980), Intramolecular catalysis and the mechanism of enzyme action. Chem. Br. 16, 136–142.

    CAS  Google Scholar 

  17. T.C. Bruice and V.K. Pandit (1960), The effect of general substitution ring size and rotamer distribution on the intramolecular nucleophilic catalysis of the hydrolysis of monophenyl esters of dibasic acids and the solvolysis of the the intermediate anhydrides. J. Amer. Chem. Soc. 85, 5858–5865.

    Article  Google Scholar 

  18. W.P. Jencks (1975), Binding energy, specificity, and enzymic catalysis: The circle effect. Adv. Enzymol. 43, 219–410.

    CAS  Google Scholar 

  19. F.M. Menger (1993), Enzyme reactivity from an organic perspective. Acc. Chem. Res. 26, 206–212.

    Article  CAS  Google Scholar 

  20. C.G. Swain and J.F. Brown (1952), Concerted displacement reactions. VII. The mechanism of acid base catalysis in non-aqueous solvents. J. Amer. Chem. Soc. 74, 2534–2537.

    Article  CAS  Google Scholar 

  21. K.A. Engdahl, H. Bivehed, P. Ahberg, and W.H. Saunders, Jr. (1983), Ratecontrolling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotopes effects. J. Amer. Chem. Soc. 105, 4767–4774.

    Article  CAS  Google Scholar 

  22. T. Higuchi, H. Takechi, I.H. Pitman, and H.L. Fung (1971), Intramolecular bifunctional facilitation in complex molecules, combined nucleophilic and general acid participation in hydrolysis of hexachlorophene monosuccinate. J. Amer. Chem. Soc. 93, 539–540.

    Article  CAS  Google Scholar 

  23. B.A. Cunningham and G.L. Schmir (1966), Iminolactones. II. Catalytic Effects on the nature of the products of hydrolysis. J. Amer. Chem. Soc. 88, 551–558.

    Article  CAS  Google Scholar 

  24. Y.N. Lee and G.L. Schmir (1978), Concurrent general acid and general base catalysis in the hydrolysis of an amide ester. 1. Monofunctional catalysis. J. Amer. Chem. Soc. 100, 6700–6707.

    Article  CAS  Google Scholar 

  25. Y.N. Lee and G.L. Schmir (1979), Concurrent general acid and general base catalysis in the hydrolysis of an imidate ester. 2. Bifunctional catalysis. J. Amer. Chem. Soc. 101, 3026–3035.

    Article  CAS  Google Scholar 

  26. W.P. Jencks (1972), Requirements for general acid-base catalysis of complex reactions. J. Amer. Chem. Soc. 94, 4731–4732.

    Article  CAS  Google Scholar 

  27. D.M. Blow, J.J. Birktoft, and B.S. Hartley (1969), Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221, 337–340.

    Article  CAS  Google Scholar 

  28. P.B. Sigler, D.M. Blow, B.W. Matthews, and R. Henderson (1968), Structure of crystalline α-chymotrypsin II. A preliminary report including a hypothesis for the activation mechanism. J. Mol. Biol. 35, 143–164.

    Article  CAS  Google Scholar 

  29. R.M. Garavito, M.G. Rossmann, P. Argos, and W. Eventoff (1977), Convergence of active center geometries. Biochemistry 16, 5065–5071.

    Article  CAS  Google Scholar 

  30. H.T. Wright (1973), Activation of chymotrypsinogen-A. An hypothesis based upon comparison of the crystal structures of chymotrypsinogen-A and α-chymotrypsin, J. Mol. Biol. 79, 13–23.

    Article  CAS  Google Scholar 

  31. M.W. Hunkapiller, M.D. Forgac, and J.H. Richards (1976), Mechanism of action of serine proteases: Tetrahedral intermediate and concerted proton transfer. Biochemistry 15, 5581–5588.

    Article  CAS  Google Scholar 

  32. H. Kaplan, V.B. Symonds, H. Dugas, and D.R. Whitaker (1970), A comparison of properties of α-lytic protease of Sorangium sp. and porcine elastase. Can. J. Chem. 47, 649–658.

    Google Scholar 

  33. M.W. Hunkapiller, S.H. Smallcombe, D.R. Whitaker, and J.H. Richards (1973), Carbon nuclear magnetic resonance studies of the histidine residue in α-lytic protease. Implication for the catalytic mechanism of serine proteases. Biochemistry 12, 4732–4743.

    Article  CAS  Google Scholar 

  34. J.L. Markley and I.B. Ibañez (1978), Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aα. Biochemistry 17, 4627–4639.

    Article  CAS  Google Scholar 

  35. G. Robillard and R.G. Shulman (1972), High resolution nuclear magnetic resonance study of the histidine-aspartate hydrogen bond in chymotrypsin and chymotrypsinogen. J. Mol. Biol. 71, 507–511.

    Article  CAS  Google Scholar 

  36. G.D. Brayer, L.T.J. Delbaere, and M.N.G. James (1979), Molecular structure of the α-lytic protease from Myxobacter 495 at 2.8 Å resolution. J. Mol. Biol. 131, 743–775.

    Article  CAS  Google Scholar 

  37. W.W. Bachovchin and J.D. Roberts (1978), Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of α-lytic protease. Implications for the charge-relay mechanism of peptide bond cleavage by serine proteases. J. Amer. Chem. Soc. 100, 8041–3047.

    Article  CAS  Google Scholar 

  38. M. Komiyama and M.L. Bender (1979), Do cleavages of amides by serine proteases occur through a stepwise pathway involving tetrahedral intermediates? Proc. Nat. Acad. Sci. USA 76, 557–560.

    Article  CAS  Google Scholar 

  39. M.A. Porubcan, W.M. Westler, LB. Ibanez, and J.L. Markley (1979), (Diisopropylphosphoryl) serine proteinases. Proton on phosphorus-31 nuclear magnetic resonance-pH titration studies. Biochemistry 18, 4108–4115.

    Article  Google Scholar 

  40. J. Kraut (1977), Serine proteases: Structure and mechanism of catalysis. Annu. Rev. Biochem. 46, 331–358.

    Article  CAS  Google Scholar 

  41. W.W. Bachovchin (1986), 15N-NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: Evidence for a moving histidine mechanism. Biochemistry 25, 7751–7759.

    Article  CAS  Google Scholar 

  42. K. Kanamori and J.D. Roberts (1983), 15N-NMR studies of biological systems. Acc. Chem. Res. 16, 35–41.

    Article  Google Scholar 

  43. W.P. Jencks (1980), When is an intermediate not an intermediate? Enforced mechanism and general acid-base catalyzed, carbocation, carbanion, and ligand exchange reactions. Acc. Chem. Res. 13, 161–169.

    Article  CAS  Google Scholar 

  44. R.A. McClelland and L.J. Sanrtry (1983), Reactivity of tetrahedral intermediates. Acc. Chem. Res. 16, 394–399.

    Article  CAS  Google Scholar 

  45. A.L. Fink and P. Meehan (1979), Detection and accumulation of tetrahedral intermediates in elastase catalysis. Proc. Nat. Acad. Sci. USA 76, 1566–1569.

    Article  CAS  Google Scholar 

  46. T.C. Bruice and J.M. Slurtevant (1959), Imidazole catalysis. V. The intramolecular participation of the imidazolyl group in the hydrolysis of some esters and the amide of γ-(4-imidazolyl)-butyric acid and 4-(2′-acetoxyethyl)-imidazole. J. Amer. Chem. Soc. 81, 2860–2870.

    Article  CAS  Google Scholar 

  47. G.A. Rogers and T.C. Bruice (1973), Isolation of a tetrahedral intermediate in an acetyl transfer reaction. J. Amer. Chem. Soc. 95, 4452–4453.

    Article  CAS  Google Scholar 

  48. G.A. Rogers and T.C. Bruice (1974), Control of modes of intramolecular imidazole catalysis of ester hydrolysis by steric and electronic effects. J. Amer. Chem. Soc. 96, 2463–2472.

    Article  CAS  Google Scholar 

  49. G.A. Rogers and T.C. Bruice (1974), Synthesis and evaluation of a model for the so-called “charge-relay” system of the serine esterases. J. Amer. Chem. Soc. 96, 2473–2480.

    Article  CAS  Google Scholar 

  50. G.A. Rogers and T.C. Bruice (1974), The mechanisms of acyl group transfer from a tetrahedral intermediate. J. Amer. Chem. Soc. 96, 2481–2488.

    Article  CAS  Google Scholar 

  51. M.L. Schiling, H.D. Roth, and W.C. Herndon (1980), Zwitterionic adducts between a strongly electrophilic ketone and tertiary amines. J. Amer. Chem. Soc. 102, 4271–4272.

    Article  Google Scholar 

  52. M. Komiyama and M.L. Bender (1977), General base-catalyzed ester hydrolysis as a model of the “charge-relay” system. Bioorg. Chem. 6, 13–20.

    Article  CAS  Google Scholar 

  53. L.D. Byers and D.E. Koshland, Jr. (1978), On the mechanism of action of methyl chymotrypsin. Bioorg. Chem. 7, 15–33.

    Article  CAS  Google Scholar 

  54. C.J. Belke, S.C.K. Su, and J.A. Shafter (1971), Imidazole catalyzed displacement of an amine from an amide by a neighboring hydroxyl group. A model for the acylation of chymotrypsin. J. Amer. Chem. Soc. 93, 4552–4561.

    Article  CAS  Google Scholar 

  55. M.P. Gamcsik, J.P.G. Mathouse, W.U. Primrose, N.E. Mackenzie, A.J.F. Boyd, R.A. Russell, and A.I. Scott (1983), Structure and stereochemistry of tetrahedral inhibitor complexes of papain by direct NMR observation. J. Amer. Chem. Soc. 105, 6324–6325.

    Article  CAS  Google Scholar 

  56. W.U. Primrose, N.E. MacKenzie, J.P.G. Mathouse, and A.I. Scott (1985), 13C-Nuclear magnetic resonance observations on the interaction between p-amidinophenylpyruvic acid and trypsin. Bioorganic Chemistry 13, 335–343.

    Article  Google Scholar 

  57. G.E. Hein and C. Niemann (1962), Steric course and specificity of a-chymotrysin-catalyzed reactions. I. J. Amer. Chem. Soc. 84, 4487–4494.

    Article  CAS  Google Scholar 

  58. G.E. Hein and C. Niemann (1962), Steric course and specificity of α-chymotrypsin-catalyzed reactions. II. J. Amer. Chem. Soc. 84, 4495–4503.

    Article  Google Scholar 

  59. H. Dugas (1969), The stereospecificity of subtilisin BPN’ towards l-keto-3-carbomethoxy-l,2,3,4-tetrahydroisoquinoline. Can. J. Biochem. 47, 985–987.

    Article  CAS  Google Scholar 

  60. M.S. Silver and T. Sone (1968), Stereospecificity in the hydrolysis of con-formationally homogeneous substrates by α-chymotrypsin. J. Amer. Chem. Soc. 90, 6193–6198.

    Article  CAS  Google Scholar 

  61. S.G. Cohen and R.M. Schultz (1968), The active site of a-chymotrypsin. J. Mol. Biol. 243, 2607–2617.

    CAS  Google Scholar 

  62. B. Belleau and R. Chevalier (1968), The absolute conformation of chymotrypsin-bound substrates. Specific recognition by the enzyme of biphenyl asymmetry in a constrained substrate. J. amer. Chem. Soc. 90, 6864–6866.

    Article  CAS  Google Scholar 

  63. P. Elie (1977), Ph.D. Dissertation, McGill University, Montreal, Canada.

    Google Scholar 

  64. D.C. Phillips (1967), The hen egg-white lysozyme molecule. Proc. Nat. Acad. Sci. USA 57, 484–495.

    Article  CAS  Google Scholar 

  65. R.E. Dickerson and I. Geis (1969), The Structure and Action of Proteins, p. 71. Harper and Row, New York.

    Google Scholar 

  66. M.R. Pincus and H.A. Scheraga (1979), Conformational energy calculation of enzyme-substrate and enzyme-inhibitor complexes of lysozyme. 2. Calculation of the structures of complexes with a flexible enzyme. Macromolecules 12, 633–644.

    Article  CAS  Google Scholar 

  67. B. Capon and M.C. Smith (1965), Intramolecular catalysis in acetal hydrolysis. Chem. Comm. 523–524.

    Google Scholar 

  68. R. Kluger and C.H. Lam (1978), Carboxylic acid participation in amide hydrolysis. External general base catalysis and general acid catalysis in reactions of norbornenylanilic acids. J. Amer. Chem. Soc. 100, 2191–2197.

    Article  CAS  Google Scholar 

  69. I. Hsu, T.J. Delbaere, M.M.G. James, and T. Hofmann (1977), Penicillopepsin from Penicillium janthinellum. Crystal structure at 2.8 Å and sequence. Homology with porcine pepsin. Nature 266, 140–145.

    Article  CAS  Google Scholar 

  70. J.P. Street and R.S. Brown (1985), Biomimetic models for cysteine proteases. 1. Intramolecular imidazole catalysis of thiol ester solvolysis: A model for the deacylation step. J. Amer. Chem. Soc. 107, 6084–6089.

    Article  CAS  Google Scholar 

  71. P. Deslongchamps (1975), Stereoelectronic control in the cleavage of tetrahedral intermediates in the hydrolysis of esters and amides. Tetrahedron 31, 2463–2490.

    Article  CAS  Google Scholar 

  72. P. Deslongchamps (1977), Stereoelectronic control in hydrolytic reactions. 26th IUPAC, Tokyo, Japan.

    Google Scholar 

  73. P. Deslongchamps (1977), Stereoelectronic Control in Hydrolytic Reactions. Heterocycles 7, 1271–1317.

    Article  CAS  Google Scholar 

  74. P. Deslongchamps (1983), Stereoelectronic Effects in Organic Chemistry. Pergamon Press, Oxford.

    Google Scholar 

  75. C.L. Perrin and O. Nunez (1986), Absence of stereoelectronic control in the hydrolysis of cyclic amidines. J. Amer. Chem. Soc. 108, 5997–6003.

    Article  CAS  Google Scholar 

  76. P. Deslongchamps, U.O. Cheriyan, J.-P. Pradère, P. Soucy, and R.J. Taillefer (1979), Hydrolysis and isomerization of syn unsymmetrical N, N-dialkylated immidate salts. Experimental evidence for conformational changes and for stereoelectronically controlled cleaves in hemi-orthoamide tetrahedral intermediates. Nouv. J. Chim. 3, 343–350.

    CAS  Google Scholar 

  77. S.A. Bizzozero and B.O. Zweifel (1975), The importance of the conformation of the tetrahedral intermediate for the α-chymotrypsin-catalyzed hydrolysis of peptide substrates. FEBS Lett. 59, 105–108.

    Article  CAS  Google Scholar 

  78. D. Petkov, E. Christova, and I. Stoineva (1978), Catalysis and leaving group binding in anilide hydrolysis by chymotrypsin. Biochim. Biophys. Acta. 527, 131–141.

    CAS  Google Scholar 

  79. D.G. Gorenstein, J.B. Findlay, B.A. Luxon, and D. Kar (1977), Stereoelectronic control in carbon-oxygen and phosphorus-oxygen bond breaking processes. Ab initio calculation and speculations on the mechanism of ribonuclease A, staphylococcal nuclease and lysozyme. J. Amer. Chem. Soc. 99, 3473–3479.

    Article  CAS  Google Scholar 

  80. W.L. Mock (1976), Torsional-strain considerations in enzymology. Some applications to proteases and ensuing mechanistic consequences. Bioorg. Chem. 5, 403–414.

    Article  CAS  Google Scholar 

  81. A.J. Kirby (1984), Stereoelectronic effects and acetal hydrolysis. Acc. Chem. Res. 17, 305–311.

    Article  CAS  Google Scholar 

  82. W.N. Lipscomb (1982), Acceleration of reactions by enzymes. Acc. Chem. Res. 15, 232–238.

    Article  CAS  Google Scholar 

  83. C.B. Post and M. Karplus (1986), Does lysozyme follow the lysozyme pathway? An alternative based on dynamic, structural, and stereoelectronic considerations. J. Amer. Chem. Soc. 108, 1317–1319.

    Article  CAS  Google Scholar 

  84. K.P. Nanibiar, D.M. Stauffer, P.A. Kolodzies, and S.A. Benner (1983), A mechanistic basis for the stereoselectivity of enzymatic transfer of hydrogen from nicotinamide cofactors. J. Amer. Chem. Soc. 105, 5886–5890.

    Article  Google Scholar 

  85. J.P. Praly and R.U. Lemieux (1987), Influence of solvent on the magnitude of the anomeric effect. Can. J. Chem. 65, 213–223.

    Article  CAS  Google Scholar 

  86. D.G. Gorenstein (1987), Stereolectronic effects in biomolecules. Chem. Rev. 87, 1047–1077.

    Article  CAS  Google Scholar 

  87. B.J.F. Hudson (1975), Immobilized enzymes. Chem. Ind. pp. 1059–1060.

    Google Scholar 

  88. K.J. Skimer (1975), Enzymes technology. Chem. Eng. News. August 18, pp. 23–42.

    Google Scholar 

  89. K. Mosbach (1976), Applications of biochemical systems in organic chemistry. In: Techniques of Chemistry Series (J.B. Jones, C.J. Sih, and D. Perlman, Eds.), Vol. 10, Part II, Chap. 9. Wiley-Interscience, New York.

    Google Scholar 

  90. C.J. Suckling (1977), Immobilized enzymes. Chem. Soc. Rev. 6, 215–233.

    Article  CAS  Google Scholar 

  91. A. Pollak, R.L. Baughn, O. Adalsteinsson, and G.M. Whitesides (1978), Immobilization of synthetically useful enzymes by condensation polymerization. J. Amer. Chem. Soc. 100, 302–304.

    Article  CAS  Google Scholar 

  92. G.G. Guilbault and M.H. Sadar (1979), Preparation and analytical uses of immobilized enzymes. Acc. Chem. Res. 12, 344–359.

    Article  CAS  Google Scholar 

  93. K. Mosbach and P.O. Larsson (1970), Preparation and application of polymer-entrapped enzymes and microorganisms in microbial transformation processes with special reference to steroid 11-β-hydroxylation and Δ1-dehydrogenation. Biotechnol. Bioeng. 13, 19–27.

    Article  Google Scholar 

  94. P.A. Suf, S. Kay, and M.D. Lilly (1969), The conversion of benzyl penicillin to 6-aminopenicillanic acid using an insoluble derivative of penicillin amidase. Biotechnol. Bioeng. 12, 337–348.

    Google Scholar 

  95. G.H. Whitesides and C.H. Wong (1985), Enzymes as catalysts in synthetic organic chemistry. Angew. Chem. Int. Ed. Engl. 24, 617–638.

    Article  Google Scholar 

  96. J.B. Jones (1986), Enzymes in organic synthesis. Tetrahedron 92, 3351–3403.

    Article  Google Scholar 

  97. A.M. Klibanov (1990), Asymmetric transformations catalyzed by enzymes in organic solvents. Acc. Chem. Res. 23, 114–120.

    Article  CAS  Google Scholar 

  98. C.H. Wong and G.M. Whitesides (1983), Synthesis of sugars by aldolase-catalyzed condensation reactions. J. Org. Chem. 48, 3199–3205.

    Article  CAS  Google Scholar 

  99. W.E. Ladner and G.M. Whitesides (1984), Lipase-catalyzed hydrolysis as a route to esters of chiral epoxy alcohols. J. Amer. Chem. Soc. 106, 7250–7251.

    Article  CAS  Google Scholar 

  100. Y.F. Wang, C.S. Chen, G. Girdaukas, and C.J. Sih (1984), Bifunctional chiral synthons via biochemical methods. 3. Optical purity enhancement in enzymatic asymmetric catalysis. J. Amer. Chem. Soc. 106, 3695–3696.

    Article  CAS  Google Scholar 

  101. G. Sabbioni and J.B. Jones (1987), Enzyme in organic synthesis. 39. Preparation of chiral cyclic acid-ester and bicyclic lactones via stereoselective pig liver esterase catalyzed hydrolyses of cyclic meso diesters. J. Org. Chem. 52, 4565–4570.

    Article  CAS  Google Scholar 

  102. G. Wulff and I. Schulze (1978), Enzyme-analogue built polymers. IX. Polymers with mercapto groups of definite cooperativity. Israel J. Chem. 17, 291–297.

    CAS  Google Scholar 

  103. K.J. Shea, E.A. Thompson, S.D. Pandey, and P.S. Beauchamp (1980), Template synthesis of macromolecules, synthesis and ammisty of functionalized macroporous polydivinylbenzene. J. Amer. Chem. Soc. 102, 3149–3155.

    Article  CAS  Google Scholar 

  104. Y. Fujii, K. Matsutami, and K. Kikuchi (1985), Formation of a specific coordination cavity for a chiral amino acid by template synthesis of a polymer Schiff base cobalt(III) complex. Chem. Commun. 415–417.

    Google Scholar 

  105. C.R. Beddell (1984), Designing drugs to fit a macromolecular receptor. Chem. Soc. Rev. 13, 279–319.

    Article  CAS  Google Scholar 

  106. G. Wulff (1982), Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites. Pure & Appl. Chem. 54, 2093–2102.

    Article  Google Scholar 

  107. G. Wulff (1989), Main-chain chirality and optical activity in polymers consisting of C-C chains. Angew. Chem. Int. Ed. Engl. 28, 21–37.

    Article  Google Scholar 

  108. J. Rebek, Jr. (1987), Model studies in molecular recognition. Science 235, 1478–1484.

    Article  CAS  Google Scholar 

  109. J. Rebek, Jr., R.B. Askew, M. Killoran, D. Nemeth, and F.T. Lin (1987), Convergent functional groups. 3. A molecular cleft recognizes substrates of complementary size, shape and functionality. J. Amer. Chem. Soc. 109, 2426–2431.

    Article  CAS  Google Scholar 

  110. J. Rebek, Jr. and D. Nemeth (1986), Molecular recognition: Ionic and aromatic stacking interactions bind complementary functional groups in a molecular cleft. J. Amer. Chem. Soc. 108, 5637–5638.

    Article  CAS  Google Scholar 

  111. J. Rebek, Jr., D. Nemeth, P. Ballester, and F.T. Lin (1987), Molecular recognition: Size and shape specficity in the binding of dicarboxylic acids. J. Amer. Chem. Soc. 109, 3474–3475.

    Article  CAS  Google Scholar 

  112. R.D. Gandour (1981), On the importance of orientation in general base catalysis by carboxylate. Bioorg. Chem. 10, 169–176.

    Article  CAS  Google Scholar 

  113. J. Rebek, Jr., R.J. Duff, W.E. Gordon, and K. Parris (1986), Convergent functional groups provide a measure of stereoelectronic effects at carboxyl oxygen. J. Amer. Chem. Soc. 108, 6068–6069.

    Article  CAS  Google Scholar 

  114. J. Wolfe, A. Costero, and J. Rebek, Jr. (1992), Convergent functional groups XII. Arrays for catalysis. Israel. J. Chem. 32, 97–104.

    CAS  Google Scholar 

  115. J. Rebek Jr., B. Askew, P. Ballester, C. Buhr, S. Jones, D. Nemeth, and K. Williams (1987), Molecular recognition: Hydrogen bonding and stacking interactions stabilize a model for nucleic acid structure. J. Amer. Chem. Soc. 109, 5033–5035.

    Article  CAS  Google Scholar 

  116. A. Galan, J. de Mendoza, C. Toiron, M. Bruix, G. Deslongchamps, and J. Rebek, Jr. (1991), A synthetic receptor for dinucleotides. J. Amer. Chem. Soc. 113, 9424–9425.

    Article  CAS  Google Scholar 

  117. J. de Mendoza (1993), Molecular recognition of biomolecules: from amino acids to nucleic acids. An. Quim. 89, 57–62.

    Google Scholar 

  118. S.C. Zimmerman (1991), Molecular tweezers: synthetic receptors for π-sandwich complexation of aromatic substrates. In: (H. Dugas, Ed.), Bioorganic Chemistry Frontiers. Vol 2. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dugas, H. (1996). Enzyme Chemistry. In: Bioorganic Chemistry. Springer Advanced Texts in Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2426-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2426-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98910-5

  • Online ISBN: 978-1-4612-2426-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics