Introduction to Bioorganic Chemistry

  • Hermann Dugas
Part of the Springer Advanced Texts in Chemistry book series (SATC)


Among the first persons to develop biooriented organic projects was F.H. Westheimer, in the 1950s. He was probably the first physical organic chemist to do serious studies of biochemical reactions. However, it was only twenty years later that the field blossomed to what is now accepted as bioorganic chemistry.


Bioorganic Chemistry Crown Ether Molecular Recognition Proximity Effect Phosphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.B. Schatz (1960), Isosterism and bio-isosterism as guides to structural variations. In: Medicinal Chemistry (A. Burger, Ed.), 2nd ed., pp. 72–88. Interscience, New York.Google Scholar
  2. 2.
    A. Korolkovas (1970), Essentials of Molecular Pharmacology, pp. 55–59. Wiley-Interscience, New York.Google Scholar
  3. 3.
    G.I. Birnbaum, M. Cygler, and D. Shugar (1984), Conformational features of acyclonucleotides: structure of acyclovir, an antiherpes agent. Can. J. Chem. 62, 2646–2652.CrossRefGoogle Scholar
  4. 4.
    R. Engel (1979), Phosphonates as analogues of natural phosphates. Chem. Rev. 77, 349–367.CrossRefGoogle Scholar
  5. 5.
    K.C. Tang, B.E. Tropp, and R. Engel (1978), The synthesis of phosphonic acid and phosphate analogues of glycerol-3-phosphate and related metabolites. Tetrahedron 34, 2873–2878.CrossRefGoogle Scholar
  6. 6.
    E. Frieden (1981), Iodine and the thyroid hormones. Trends Biochem. Sci. 6, 50–53.CrossRefGoogle Scholar
  7. 7.
    T.P. Singer, A.J. Trevor, and N. Castagnoli, Jr. (1987), Biochemistry of the neurotoxic action of MPTP. Trends Biochem. Sci. 12, 266–270.CrossRefGoogle Scholar
  8. 8.
    J.-M. Lehn (1985), Supramolecular chemistry: Receptors, catalysts, and carriers. Science 227, 849–850.CrossRefGoogle Scholar
  9. 9.
    H. Colquhoun, F. Stoddart, and D. Williams (1986), Chemistry beyond the molecules. New Scientist, May 1, p. 44.Google Scholar
  10. 10.
    K.L. Wolf, M. Duken, and K. Merkel (1940), Über Übermolekülbildung. Z. Phys. Chem. Abt. B 46, 287–312.Google Scholar
  11. 11.
    J.M. Lehn (1993), Supramolecular chemistry—molecular information and the design of supramolecular materials. Makromol. Chem. Macromol. Symp. 69, 1–17.CrossRefGoogle Scholar
  12. 12.
    C.J. Suckling, K.E. Suckling, and C.W. Suckling (1979), Chemistry Through Models. Cambridge University Press, Cambridge.Google Scholar
  13. 13.
    S. Sasaki, M. Shionoya, and K. Koga (1985), Functionalized crown ether as an approach to the enzyme model for the syntheses of peptides. J. Am. Chem. Soc. 107, 3371–3372.CrossRefGoogle Scholar
  14. 14.
    B.A. Boyce, A. Carroy, J.-M. Lehn, and D. Parker (1984), Heterotopic ligands: Synthesis and complexation properties of phosphine-functionalized dipodal macrocycles. Chem. Commun. 1546–1548.Google Scholar
  15. 15a.
    T.R. Cech (1987), The chemistry of self-splicing RNA and DNA enzymes. Science 236, 1532–1539.CrossRefGoogle Scholar
  16. 15b.
    T.R. Cech (1986), RNA as an enzyme. Sci. Amer. Dec., pp. 64–75.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Hermann Dugas
    • 1
  1. 1.Département de ChimieUniversité de MontréalMontréalCanada

Personalised recommendations