Towards a Classification of Hilbert Modular Threefolds

  • H. G. Grundman

Abstract

We begin with the classical (full) modular group and variety of which Hilbert modular groups and varieties are generalizations.

Keywords

Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Blumenthal. Uber Modulfunktionen von mehereren Veränderlichen. Math. Ann., 56:509– 548, 1903.Google Scholar
  2. [2]
    H. G. Grundman. Defect series and nonrational Hilbert modular threefolds. Mathematische Annalen. To appear.Google Scholar
  3. [3]
    H. G. Grundman. The arithmetic genus of Hilbert modular varieties over non-Galois cubic fields. J. Number Theory, 37:343– 365, 1991.Google Scholar
  4. [4]
    H. G. Grundman. On the classification of Hilbert modular threefolds. Manuscripta Mathematica, 72:297– 305, 1991.Google Scholar
  5. [5]
    H. G. Grundman. Defects of cusp singularities and the classification of Hilbert modular threefolds. Mathematische Annalen, 292:1– 12, 1992.Google Scholar
  6. [6]
    F. Hirzebruch. Hilbert modular surfaces. Enseign. Math., II. Ser19:183– 281, 1973.Google Scholar
  7. [7]
    F. Hirzebruch and A. Van de Ven. Hilbert modular surfaces and the classification of algebraic surfaces. Invent. Math., 23:1– 29, 1974.Google Scholar
  8. [8]
    F. Hirzebruch and D. Zagier. Classification of Hilbert modular surfaces. In Complex Analysis and Algebraic Geometry, pages 43–77. University Press and Iwanami Shoten, Cambridge, 1977.Google Scholar
  9. [9]
    F. W. Knöller. Beispiele dreidimensionaler Hilbertsher Modulmannigfaltigkeiten von allgemeinem Typ. Manuscr. Math., 37:135– 161, 1982.Google Scholar
  10. [10]
    F. W. Knöller. Über die Plurigeschlechter Hilbertsher Modulmannig- faltigkeiten. Math. Ann., 264:413– 422, 1983.Google Scholar
  11. [11]
    S. Lang . Algebraic Number Theory. Springer-Verlag, New York, 1986.MATHGoogle Scholar
  12. [12]
    H. Maass. Uber Gruppen von hyperabelschen Transformationen. Sitzungsber. Heidelb. Akad Wiss, pages 3– 26, 1940.Google Scholar
  13. [13]
    A. Prestel. Die elliptischen Fixpunkte der Hilbertschen Modulgruppen. Math. Ann., 177:181– 209, 1968.Google Scholar
  14. [14]
    T. Shintani. On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sei., Univ. Tokyo, Sect I A, 23(2):393– 417, 1976.Google Scholar
  15. [15]
    E. Thomas. Defects of cusp singularities. Math. Ann., 264:397– 411, 1983.Google Scholar
  16. [16]
    E. Thomas and A. T. Vasquez. Rings of Hilbert modular forms. Composite Math., 48:139– 165, 1983.Google Scholar
  17. [17]
    S. Tsuyumine. On the Kodaira dimensions of Hilbert modular varieties. Invent. Math., 80:269– 281, 1985.Google Scholar
  18. [18]
    G. van de Geer. Hilbert Modular Surfaces. Springer-Verlag, Berlin, 1988.MATHGoogle Scholar
  19. [19]
    M.-F. Vignéras. Invariants numériques des groupes de Hilbert. Math. Ann., 224:189– 215, 1976.Google Scholar
  20. [20]
    D. Weisser. The arithmetic genus of the Hilbert modular variety and the elliptic fixed points of the Hilbert modular group. Math. Ann., 257:9– 22, 1981.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • H. G. Grundman
    • 1
  1. 1.Department of MathematicsBryn Mawr CollegeBryn MawrUSA

Personalised recommendations